我培训scikit-learn
neighbors.KNeighborsClassifier
模型对象来预测多类别分类问题。我已经预测过最可能的课程,但现在我想提取使用predict_proba
函数预测的第二个最可能的课程。但是,函数的输出只给出了一个原始的numpy数组,它应该按字典顺序排序。但是,当我观察数据以查看概率是否按字母顺序排列时,但似乎并非如此。
from sklearn import neighbors
knn_classifier = neighbors.KNeighborsClassifier(n_neighbors = NUM_NEIGHBORS, weights = 'distance', metric ='haversine' )
knn_classifier.fit(knn_data, response)
unique_levels = response.unique()
unique_levels.sort()
print unique_levels
['Canada' 'DCarea' 'NYarea' 'bostonArea' 'caribbean' 'eastAsia' 'florida'
'hawaii' 'italy' 'midwest' 'nevada' 'newEngland' 'northernEurope'
'northern_california' 'northern_france' 'notFound' 'otherSouthernEurope'
'pacificNW' 'pennArea' 'south' 'southAmerica' 'southeastAsiaAus'
'southern_california' 'spain' 'texas' 'unitedKingdom' 'west']
knn_preds = knn_classifier.predict(knn_data)
knn_probs = knn_classifier.predict_proba(knn_data)
knn_preds[0:10]
array(['DCarea', 'NYarea', 'DCarea', 'Canada', 'midwest', 'unitedKingdom',
'midwest', 'NYarea', 'NYarea', 'south'], dtype=object)
knn_probs[0]
array([ 0. , 0.0667, 0.2667, 0.0333, 0.1 , 0. , 0. ,
0. , 0. , 0.0667, 0.1 , 0. , 0. , 0.0667,
0. , 0. , 0. , 0.0333, 0. , 0.1 , 0. ,
0. , 0.1333, 0. , 0. , 0. , 0.0333])
knn_probs[1]
array([ 0. , 0. , 0.25 , 0. , 0. , 0. , 0. , 0. ,
0. , 0.125, 0.125, 0. , 0. , 0.25 , 0. , 0. ,
0. , 0.125, 0. , 0. , 0. , 0. , 0.125, 0. ,
0. , 0. , 0. ])
如果概率按字典顺序排序,我希望knn_probs[0]
中的第二个键具有最高概率,因为'DCarea'
是获胜类,并且它按字典顺序排在第二位(每个上面)。但是,最大值是列表中的第三个项。是什么赋予了?
答案 0 :(得分:3)
我认为概率顺序遵循knn_classifier.classes_
中提取的标签的顺序。您可以zip
classes_
并预测概率向量,排序并选择第二个概率向量。
classes_ = np.array(['a','b','c'])
prob_vec = np.array([0.6, 0, 0.4])
sec_class, sec_prob = list(sorted(zip(classes_, prob_vec), key=lambda k: -k[1]))[1]