我正在尝试在C#中实现面部检测。我目前有一张黑色+白色的照片,上面有一张脸(Here)。然而,我现在正试图消除噪声,然后扩大图像,以便在实施检测时提高可靠性。
到目前为止我的方法是:
using System;
using System.Collections.Generic
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Drawing.Imaging;
namespace ImageErosion
{
public partial class Form1 : Form
{
public int CompareEmptyColor { get; set; }
public Form1()
{
InitializeComponent();
}
private void btErodeImage_Click(object sender, EventArgs e)
{
Image inputImage = pbInputImage.Image;
Image result = Process(inputImage);
pbInputImage.Image = result;
}
unsafe public Image Process(Image input)
{
Bitmap bmp = (Bitmap)input;
Bitmap bmpSrc = (Bitmap)input;
BitmapData bmData = bmp.LockBits(new Rectangle(0, 0, bmp.Width, bmp.Height),
ImageLockMode.ReadWrite,
PixelFormat.Format1bppIndexed);
int stride = bmData.Stride;
int stride2 = bmData.Stride * 2;
IntPtr Scan0 = bmData.Scan0;
byte* p = (byte*)(void*)Scan0;
int nOffset = stride - bmp.Width * 3;
int nWidth = bmp.Width - 2;
int nHeight = bmp.Height - 2;
var w = bmp.Width;
var h = bmp.Height;
var rp = p;
var empty = CompareEmptyColor;
byte c, cm;
int i = 0;
// Erode every pixel
for (int y = 0; y < h; y++)
{
for (int x = 0; x < w; x += 3, i++)
{
// Middle pixel
cm = p[y * stride + x];
if (cm == empty) { continue; }
#region FirstRow
// Row 0
// Left pixel
if (x - 3 > 0 && y - 2 > 0)
{
c = p[(y - 2) * stride + (x - 3)];
if (c == empty) { continue; }
}
// Middle left pixel
if (x - 2 > 0 && y - 2 > 0)
{
c = p[(y - 2) * stride + (x - 2)];
if (c == empty) { continue; }
}
if (x - 1 > 0 && y - 2 > 0)
{
c = p[(y - 2) * stride + (x - 1)];
if (c == empty) { continue; }
}
if (y - 2 > 0)
{
c = p[(y - 2) * stride + x];
if (c == empty) { continue; }
}
if (x + 1 < w && y - 2 > 0)
{
c = p[(y - 2) * stride + (x + 1)];
if (c == empty) { continue; }
}
if (x + 2 < w && y - 2 > 0)
{
c = p[(y - 2) * stride + (x + 2)];
if (c == empty) { continue; }
}
if (x + 3 < w && y - 2 > 0)
{
c = p[(y - 2) * stride + (x + 3)];
if (c == empty) { continue; }
}
#endregion
#region SecondRow
// Row 1
// Left pixel
if (x - 3 > 0 && y - 1 > 0)
{
c = p[(y - 1) * stride + (x - 3)];
if (c == empty) { continue; }
}
if (x - 2 > 0 && y - 1 > 0)
{
c = p[(y - 1) * stride + (x - 2)];
if (c == empty) { continue; }
}
if (x - 1 > 0 && y - 1 > 0)
{
c = p[(y - 1) * stride + (x - 1)];
if (c == empty) { continue; }
}
if (y - 1 > 0)
{
c = p[(y - 1) * stride + x];
if (c == empty) { continue; }
}
if (x + 1 < w && y - 1 > 0)
{
c = p[(y - 1) * stride + (x + 1)];
if (c == empty) { continue; }
}
if (x + 2 < w && y - 1 > 0)
{
c = p[(y - 1) * stride + (x + 2)];
if (c == empty) { continue; }
}
if (x + 3 < w && y - 1 > 0)
{
c = p[(y - 1) * stride + (x + 3)];
if (c == empty) { continue; }
}
#endregion
#region ThirdRow
// Row 2
if (x - 3 > 0)
{
c = p[y * stride + (x - 3)];
if (c == empty) { continue; }
}
if (x - 2 > 0)
{
c = p[y * stride + (x - 2)];
if (c == empty) { continue; }
}
if (x - 1 > 0)
{
c = p[y * stride + (x - 1)];
if (c == empty) { continue; }
}
if (x + 1 < w)
{
c = p[y * stride + (x + 1)];
if (c == empty) { continue; }
}
if (x + 2 < w)
{
c = p[y * stride + (x + 2)];
if (c == empty) { continue; }
}
if (x + 3 < w)
{
c = p[y * stride + (x + 3)];
if (c == empty) { continue; }
}
#endregion
#region FourthRow
// Row 3
if (x - 3 > 0 && y + 1 < h)
{
c = p[(y + 1) * stride + (x - 3)];
if (c == empty) { continue; }
}
if (x - 2 > 0 && y + 1 < h)
{
c = p[(y + 1) * stride + (x - 2)];
if (c == empty) { continue; }
}
if (x - 1 > 0 && y + 1 < h)
{
c = p[(y + 1) * stride + (x - 1)];
if (c == empty) { continue; }
}
if (y + 1 < h)
{
c = p[(y + 1) * stride + x];
if (c == empty) { continue; }
}
if (x + 1 < w && y + 1 < h)
{
c = p[(y + 1) * stride + (x + 1)];
if (c == empty) { continue; }
}
if (x + 2 < w && y + 1 < h)
{
c = p[(y + 1) * stride + (x + 2)];
if (c == empty) { continue; }
}
if (x + 3 < w && y + 1 < h)
{
c = p[(y + 1) * stride + (x + 3)];
if (c == empty) { continue; }
}
#endregion
#region FifthRow
// Row 4
if (x - 3 > 0 && y + 2 < h)
{
c = p[(y + 2) * stride + (x - 3)];
if (c == empty) { continue; }
}
if (x - 2 > 0 && y + 2 < h)
{
c = p[(y + 2) * stride + (x - 2)];
if (c == empty) { continue; }
}
if (x - 1 > 0 && y + 2 < h)
{
c = p[(y + 2) * stride + (x - 1)];
if (c == empty) { continue; }
}
if (y + 2 < h)
{
c = p[(y + 2) * stride + x];
if (c == empty) { continue; }
}
if (x + 1 < w && y + 2 < h)
{
c = p[(y + 2) * stride + (x + 1)];
if (c == empty) { continue; }
}
if (x + 2 < w && y + 2 < h)
{
c = p[(y + 2) * stride + (x + 2)];
if (c == empty) { continue; }
}
if (x + 3 < w && y + 2 < h)
{
c = p[(y + 2) * stride + (x + 3)];
if (c == empty) { continue; }
}
#endregion
// If all neighboring pixels are processed
// it's clear that the current pixel is not a boundary pixel.
rp[i] = cm;
}
}
bmpSrc.UnlockBits(bmData);
return bmpSrc;
}
}
}
据我了解,为了侵蚀图像(并消除噪点),我们需要检查每个像素以查看它周围的像素是否为黑色,如果是,那么它是一个边框像素,我们不需要保持它,我相信我的代码确实如此,所以它超出了我为什么它不起作用。
非常感谢任何帮助或指示
谢谢, 克里斯
答案 0 :(得分:2)
一些跳出来的bugaboos。图像格式为24bpp,但您正在读取字节。如果它是一个纯黑色+白色图像但是左边的像素在x - 3处可能会有效。如果将x加3,也是明智的。
索引行是错误的,你乘以w,你应该乘以步幅。
答案 1 :(得分:1)
你应该看看AForge.net图书馆(http://code.google.com/p/aforge/)。图像有许多不同的过滤器。在那里,您还可以找到如何直接修改图像的示例
答案 2 :(得分:0)
为什么不使用openCV?扩张是一种直接的功能,通常对所有图像都是最佳的..