创建贝叶斯网络并使用Python3.x学习参数

时间:2015-02-10 12:11:09

标签: python-3.x machine-learning scikit-learn probability bayesian-networks

我正在Windows上为python3.x搜索最合适的工具来创建贝叶斯网络,从数据中学习其参数并执行推理。

网络结构我想自己定义如下: enter image description here

摘自this论文。

所有变量都是离散的(并且只能采用2种可能的状态),除了"尺寸"和#34; GraspPose",它们是连续的,应该被建模为高斯混合物。

作者使用期望最大化算法来学习条件概率表的参数,并使用 Junction-Tree算法来计算精确的推理。

据我所知,所有这些都是在MatLab中通过墨菲的贝叶斯网络工具箱实现的。

我试图在python中搜索类似的东西,这是我的结果:

  1. Python贝叶斯网络工具箱http://sourceforge.net/projects/pbnt.berlios/http://pbnt.berlios.de/)。网站不起作用,项目似乎得不到支持。
  2. BayesPy https://github.com/bayespy/bayespy 我认为这是我真正需要的,但我没有找到类似于我的案例的一些例子,以了解如何构建网络结构。
  3. PyMC似乎是一个功能强大的模块,但我在Windows 64,python 3.3上导入它时遇到问题。我安装开发版

    时出错

    警告(theano.configdefaults):未检测到g ++! Theano将无法执行优化的C实现(针对CPU和GPU),并且将默认为Python实现。性能将严重下降。要删除此警告,请将Theano标记cxx设置为空字符串。

  4. 更新:

    1. libpgm(http://pythonhosted.org/libpgm/)。正是我需要的,遗憾的是python 3.x
    2. 不支持
    3. 非常有趣的积极开发图书馆:PGMPY。遗憾的是,不支持连续变量和从数据中学习。 https://github.com/pgmpy/pgmpy/
    4. 任何建议和具体例子都将受到高度赞赏。

5 个答案:

答案 0 :(得分:7)

最近更新了pomegranate以包含贝叶斯网络。我自己没有尝试过,但界面看起来不错,并且sklearn-ish。

答案 1 :(得分:1)

尝试bnlearn库,它包含许多功能,可从数据中学习参数并进行推理。

pip install bnlearn

您的用例将是这样的:

# Import the library
import bnlearn

# Define the network structure
edges = [('task', 'size'),
         ('lat var', 'size'),
         ('task', 'fill level'),
         ('task', 'object shape'),
         ('task', 'side graspable'),
         ('size', 'GrasPose'),
         ('task', 'GrasPose'),
         ('fill level', 'GrasPose'),
         ('object shape', 'GrasPose'),
         ('side graspable', 'GrasPose'),
         ('GrasPose', 'latvar'),
]

# Make the actual Bayesian DAG
DAG = bnlearn.make_DAG(edges)

# DAG is stored in adjacency matrix
print(DAG['adjmat'])

# target           task   size  lat var  ...  side graspable  GrasPose  latvar
# source                                 ...                                  
# task            False   True    False  ...            True      True   False
# size            False  False    False  ...           False      True   False
# lat var         False   True    False  ...           False     False   False
# fill level      False  False    False  ...           False      True   False
# object shape    False  False    False  ...           False      True   False
# side graspable  False  False    False  ...           False      True   False
# GrasPose        False  False    False  ...           False     False    True
# latvar          False  False    False  ...           False     False   False
# 
# [8 rows x 8 columns]

# No CPDs are in the DAG. Lets see what happens if we print it.
bnlearn.print_CPD(DAG)
# >[BNLEARN.print_CPD] No CPDs to print. Use bnlearn.plot(DAG) to make a plot.

# Plot DAG. Note that it can be differently orientated if you re-make the plot.
bnlearn.plot(DAG)

Pre-defined DAG

现在,我们需要数据来学习其参数。假设这些存储在您的 df 中。数据文件中的变量名称必须存在于DAG中。

# Read data
df = pd.read_csv('path_to_your_data.csv')

# Learn the parameters and store CPDs in the DAG. Use the methodtype your desire. Options are maximumlikelihood or bayes.
DAG = bnlearn.parameter_learning.fit(DAG, df, methodtype='maximumlikelihood')
# CPDs are present in the DAG at this point.
bnlearn.print_CPD(DAG)

# Start making inferences now. As an example:
q1 = bnlearn.inference.fit(DAG, variables=['lat var'], evidence={'fill level':1, 'size':0, 'task':1})

下面是一个带有演示数据集(喷头)的工作示例。你可以玩这个。

# Import example dataset
df = bnlearn.import_example('sprinkler')
print(df)
#      Cloudy  Sprinkler  Rain  Wet_Grass
# 0         0          0     0          0
# 1         1          0     1          1
# 2         0          1     0          1
# 3         1          1     1          1
# 4         1          1     1          1
# ..      ...        ...   ...        ...
# 995       1          0     1          1
# 996       1          0     1          1
# 997       1          0     1          1
# 998       0          0     0          0
# 999       0          1     1          1

# [1000 rows x 4 columns]


# Define the network structure
edges = [('Cloudy', 'Sprinkler'),
         ('Cloudy', 'Rain'),
         ('Sprinkler', 'Wet_Grass'),
         ('Rain', 'Wet_Grass')]

# Make the actual Bayesian DAG
DAG = bnlearn.make_DAG(edges)
# Print the CPDs
bnlearn.print_CPD(DAG)
# [BNLEARN.print_CPD] No CPDs to print. Use bnlearn.plot(DAG) to make a plot.
# Plot the DAG
bnlearn.plot(DAG)

enter image description here

# Parameter learning on the user-defined DAG and input data
DAG = bnlearn.parameter_learning.fit(DAG, df)

# Print the learned CPDs
bnlearn.print_CPD(DAG)

# [BNLEARN.print_CPD] Independencies:
# (Cloudy _|_ Wet_Grass | Rain, Sprinkler)
# (Sprinkler _|_ Rain | Cloudy)
# (Rain _|_ Sprinkler | Cloudy)
# (Wet_Grass _|_ Cloudy | Rain, Sprinkler)
# [BNLEARN.print_CPD] Nodes: ['Cloudy', 'Sprinkler', 'Rain', 'Wet_Grass']
# [BNLEARN.print_CPD] Edges: [('Cloudy', 'Sprinkler'), ('Cloudy', 'Rain'), ('Sprinkler', 'Wet_Grass'), ('Rain', 'Wet_Grass')]
# CPD of Cloudy:
# +-----------+-------+
# | Cloudy(0) | 0.494 |
# +-----------+-------+
# | Cloudy(1) | 0.506 |
# +-----------+-------+
# CPD of Sprinkler:
# +--------------+--------------------+--------------------+
# | Cloudy       | Cloudy(0)          | Cloudy(1)          |
# +--------------+--------------------+--------------------+
# | Sprinkler(0) | 0.4807692307692308 | 0.7075098814229249 |
# +--------------+--------------------+--------------------+
# | Sprinkler(1) | 0.5192307692307693 | 0.2924901185770751 |
# +--------------+--------------------+--------------------+
# CPD of Rain:
# +---------+--------------------+---------------------+
# | Cloudy  | Cloudy(0)          | Cloudy(1)           |
# +---------+--------------------+---------------------+
# | Rain(0) | 0.6518218623481782 | 0.33695652173913043 |
# +---------+--------------------+---------------------+
# | Rain(1) | 0.3481781376518219 | 0.6630434782608695  |
# +---------+--------------------+---------------------+
# CPD of Wet_Grass:
# +--------------+--------------------+---------------------+---------------------+---------------------+
# | Rain         | Rain(0)            | Rain(0)             | Rain(1)             | Rain(1)             |
# +--------------+--------------------+---------------------+---------------------+---------------------+
# | Sprinkler    | Sprinkler(0)       | Sprinkler(1)        | Sprinkler(0)        | Sprinkler(1)        |
# +--------------+--------------------+---------------------+---------------------+---------------------+
# | Wet_Grass(0) | 0.7553816046966731 | 0.33755274261603374 | 0.25588235294117645 | 0.37910447761194027 |
# +--------------+--------------------+---------------------+---------------------+---------------------+
# | Wet_Grass(1) | 0.2446183953033268 | 0.6624472573839663  | 0.7441176470588236  | 0.6208955223880597  |
# +--------------+--------------------+---------------------+---------------------+---------------------+

# Make inference
q1 = bnlearn.inference.fit(DAG, variables=['Wet_Grass'], evidence={'Rain':1, 'Sprinkler':0, 'Cloudy':1})

# +--------------+------------------+
# | Wet_Grass    |   phi(Wet_Grass) |
# +==============+==================+
# | Wet_Grass(0) |           0.2559 |
# +--------------+------------------+
# | Wet_Grass(1) |           0.7441 |
# +--------------+------------------+

print(q1.values)
# array([0.25588235, 0.74411765])

更多示例可以在bnlearn的页面上找到: https://erdogant.github.io/bnlearn

答案 2 :(得分:0)

对于pymc的g ++问题,我强烈建议完成g ++安装,这会极大地促进采样过程,否则你将不得不忍受这个警告并在那里坐了1小时进行2000采样过程。

修复警告的方法是: 1.安装g ++,下载cywing并获得g ++安装,你可以谷歌那样。要检查这一点,只需转到“cmd”并输入“g ++”,如果它显示“require input file”,那很好,你安装了g ++。 2.安装python包:mingw,libpython 3.安装python包:theano

这应该可以解决这个问题。

我目前正在和你一起解决同样的问题,祝你好运!

答案 3 :(得分:0)

一直到晚会,但我已经使用JPype包装了BayesServer Java API;它可能没有您需要的所有功能,但您可以使用以下内容创建上述网络:

from bayesianpy.network import Builder as builder
import bayesianpy.network

nt = bayesianpy.network.create_network()

# where df is your dataframe
task = builder.create_discrete_variable(nt, df, 'task')

size = builder.create_continuous_variable(nt, 'size')
grasp_pose = builder.create_continuous_variable(nt, 'GraspPose')

builder.create_link(nt, size, grasp_pose)
builder.create_link(nt, task, grasp_pose)

for v in ['fill level', 'object shape', 'side graspable']:
    va = builder.create_discrete_variable(nt, df, v)
    builder.create_link(nt, va, grasp_pose)
    builder.create_link(nt, task, va)

# write df to data store
with bayesianpy.data.DataSet(df, bayesianpy.utils.get_path_to_parent_dir(__file__), logger) as dataset:
    model = bayesianpy.model.NetworkModel(nt, logger)
    model.train(dataset)

    # to query model multi-threaded
    results = model.batch_query(dataset, [bayesianpy.model.QueryModelStatistics()], append_to_df=False)

我不隶属于贝叶斯服务器 - 并且Python包装器不是'官方'(您可以直接通过Python使用Java API)。我的包装器做了一些假设,并对我不太用的函数设置了限制。回购在这里:github.com/morganics/bayesianpy

答案 4 :(得分:0)

我正在寻找一个类似的图书馆,但我发现石榴是一个很好的图书馆。谢谢James Atwood

这里是使用方法的示例。

from pomegranate import *
import numpy as np

mydb=np.array([[1,2,3],[1,2,4],[1,2,5],[1,2,6],[1,3,8],[2,3,8],[1,2,4]])

bnet = BayesianNetwork.from_samples(mydb)

print(bnet.node_count())

print(bnet.probability([[1,2,3]]))
print (bnet.probability([[1,2,8]]))