如何将Stata中的foreach转换成R?

时间:2015-02-10 04:52:09

标签: r stata

我有一个数据框(df),包含CA,VT,NC,AZ,CAvalue,VTvalue,NCvalue,AZvalue等变量。

在Stata中,我可以使用foreach命令和generate个新变量:

foreach x in CA VT NC AZ {
    gen `x'1 = 0
    replace `x'1 = 1 if `x'value > 1
}

当我将此代码转换为R时,我发现它有问题。

这是我写的:

x=c("CA","VT","NC","AZ")
x_1=paste(x,"1",sep="")
m1=as.data.frame(matrix(0,ncol=length(x),nrow=NROW(df)))
colnames(m1)=x_1

虽然我在创建以“1”结尾的新变量时没有问题,但我不知道如何转换以“replace”开头的行。我尝试使用CAtime,VTtime,NCtime和AZtime创建另一个向量。但我不知道如何将它们合并到循环中而不写入四次。

更新: 最初,我的数据看起来像这样:

df=as.data.frame(matrix(runif(200,1,150),ncol=8,nrow=25))
name=c("CA","VT","NC","AZ","CAtime","VTtime", "NCtime","AZtime")
colnames(df)=name

然后我想在新的数据框m1中创建4个新变量CA1,VT1,NC1,AZ1:

x=c("CA","VT","NC","AZ")
x_1=paste(x,"1",sep="")
m1=as.data.frame(matrix(0,ncol=length(x),nrow=NROW(df)))
colnames(m1)=x_1

m1中所有变量值= 0。

然后,如果CAtime> 1,我希望CA1中的相应单元格= 1。这适用于所有四个变量CAtime,VTtime,NCtime,AZtime。我不想写四个循环,这就是我被卡住的原因。

2 个答案:

答案 0 :(得分:4)

获取与您的说明匹配的示例数据集df

set.seed(1)
x <- c("CA","VT","NC","AZ")
df <- setNames(data.frame(replicate(8,sample(0:2,5,replace=TRUE),simplify=FALSE)),
      c("CA","VT","NC","AZ","CAvalue","VTvalue","NCvalue","AZvalue"))
df

#  CA VT NC AZ CAvalue VTvalue NCvalue AZvalue
#1  0  2  0  1       2       1       1       2
#2  1  2  0  2       0       0       1       2
#3  1  1  2  2       1       1       1       0
#4  2  1  1  1       0       2       0       2
#5  0  0  2  2       0       1       2       1

现在lapply检查每个列的值是否为> 1,并将其重新分配给新变量,并在末尾附加1

df[paste0(x,"1")] <- lapply(df[paste0(x,"value")], function(n) as.numeric(n > 1) )
df

#  CA VT NC AZ CAvalue VTvalue NCvalue AZvalue CA1 VT1 NC1 AZ1
#1  0  2  0  1       2       1       1       2   1   0   0   1
#2  1  2  0  2       0       0       1       2   0   0   0   1
#3  1  1  2  2       1       1       1       0   0   0   0   0
#4  2  1  1  1       0       2       0       2   0   1   0   1
#5  0  0  2  2       0       1       2       1   0   0   1   0

答案 1 :(得分:3)

以下是使用set中的data.table的可能选项,这可以通过引用更新来提高效率。

library(data.table)
setDT(df)[,(x1):= NA]
x2 <- paste0(x, 'value')
indx <- match(x1, names(df))
for(j in seq_along(x2)){
   set(df, i=NULL, j=indx[j], value=as.numeric(df[[x2[j]]]>1))
 }
df
#   CA VT NC AZ CAvalue VTvalue NCvalue AZvalue CA1 VT1 NC1 AZ1
#1:  0  2  0  1       2       1       1       2   1   0   0   1
#2:  1  2  0  2       0       0       1       2   0   0   0   1
#3:  1  1  2  2       1       1       1       0   0   0   0   0
#4:  2  1  1  1       0       2       0       2   0   1   0   1
#5:  0  0  2  2       0       1       2       1   0   0   1   0

更新

假设我们需要另一个数据集中的新列,我们可以将结果子集化为一个。或者使用修改后的例子,

 setDT(df1)
 setDT(df2)
 x2 <- paste0(x, 'time')
 for(j in seq_along(x2)){
   set(df2, i=NULL, j=j, value=as.numeric(df1[[x2[j]]] >1))
  }

  head(df2,4)
  #  CA1 VT1 NC1 AZ1
  #1:   0   0   1   1
  #2:   0   1   1   0
  #3:   0   0   0   1
  #4:   1   1   0   0

数据

set.seed(1)
x <- c("CA","VT","NC","AZ")
x1 <- paste0(x, 1)

df <- setNames(data.frame(replicate(8,sample(0:2,5,replace=TRUE),
   simplify=FALSE)),c("CA","VT","NC","AZ","CAvalue","VTvalue","NCvalue",
"AZvalue"))

set.seed(425)
df1 <- as.data.frame(matrix(rnorm(200,1,150),ncol=8,nrow=25))
name <- c("CA","VT","NC","AZ","CAtime","VTtime", "NCtime","AZtime")
colnames(df1) <- name

df2 <- as.data.frame(matrix(0,ncol=length(x),nrow=NROW(df1)))
colnames(df2) <- x1