我有一个如下所示的数据框:
system Id initial final
665 9 16001 6070 6071
683 10 16001 6100 6101
696 11 16001 6101 6113
712 10 16971 6150 6151
715 11 16971 6151 6163
4966 7 4118 10238 10242
5031 9 4118 10260 10278
5088 10 4118 10279 10304
5115 11 4118 10305 10317
structure(list(system = c(9L, 10L, 11L, 10L, 11L, 7L, 9L, 10L,
11L), Id = c(16001L, 16001L, 16001L, 16971L, 16971L, 4118L, 4118L,
4118L, 4118L), initial = c(6070, 6100, 6101, 6150, 6151, 10238,
10260, 10279, 10305), final = c(6071, 6101, 6113, 6151, 6163,
10242, 10278, 10304, 10317)), .Names = c("system", "Id", "initial",
"final"), row.names = c(665L, 683L, 696L, 712L, 715L, 4966L,
5031L, 5088L, 5115L), class = "data.frame")
我想获得一个带有下一个结构的新数据框
Id system length initial final
1 16001 9,10,11 3 6070 6113
2 16971 10,11 2 6150 6163
3 4118 7 1 10238 10242
4 4118 9,10,11 3 10260 10317
structure(list(Id = c(16001L, 16971L, 4118L, 4118L), system = structure(c(3L,
1L, 2L, 3L), .Label = c("10,11", "7", "9,10,11"), class = "factor"),
length = c(3L, 2L, 1L, 3L), initial = c(6070L, 6150L, 10238L,
10260L), final = c(6113, 6163, 10242, 10317)), .Names = c("Id",
"system", "length", "initial", "final"), class = "data.frame", row.names = c(NA,
-4L))
分组是由Id和" system"中的差异(行之间)。场等于一。此外,我想得到不同的"系统"以及分组中涉及多少。最后一列有第一个" initial"最后一个" final"也参与其中。
可以在r中这样做吗? 感谢。
答案 0 :(得分:3)
您可以使用data.table
。将“data.frame”转换为“data.table”(setDT
),通过获取“system”(diff(system)
),{{1}的相邻元素的差异来创建分组变量“indx”逻辑向量,使用“Id”和“indx”作为分组变量来获取统计信息。
cumsum
或基于@ jazzurro关于使用library(data.table)
setDT(df)[,list(system=toString(system), length=.N, initial=initial[1L],
final=final[.N]), by=list(Id,indx=cumsum(c(TRUE, diff(system)!=1)))][,
indx:=NULL][]
# Id system length initial final
#1: 16001 9, 10, 11 3 6070 6113
#2: 16971 10, 11 2 6150 6163
#3: 4118 7 1 10238 10242
#4: 4118 9, 10, 11 3 10260 10317
中的first/last
函数的评论,
dplyr
答案 1 :(得分:1)
没有data.table
的解决方案,但plyr
:
library(plyr)
func = function(subdf)
{
bool = c(diff(subdf$system),1)==1
ldply(split(subdf, bool), function(u){
data.frame(system = paste(u$system, collapse=','),
Id = unique(u$Id),
length = nrow(u),
initial= head(u,1)$initial,
final = tail(u,1)$final)
})
}
ldply(split(df, df$Id), func)
# .id system length Id initial final
#1 FALSE 7 1 4118 10238 10242
#2 TRUE 9,10,11 3 4118 10260 10317
#3 TRUE 9,10,11 3 16001 6070 6113
#4 TRUE 10,11 2 16971 6150 6163