http://www.texample.net/tikz/examples/lindenmayer-systems/
我的示例代码如下所示,我不知道如何用色调着色。
plot.koch <- function(k,col="blue"){
plot(0,0,xlim=c(0,1), ylim=c(-sqrt(3)/6,sqrt(3)/2), asp = 1,type="n",xlab="", ylab="")
plotkoch <- function(x1,y1,x2,y2,n){
if (n > 1){
plotkoch(x1,y1,(2*x1+x2)/3,(2*y1+y2)/3,n-1);
plotkoch((2*x1+x2)/3,(2*y1+y2)/3,(x1+x2)/2-(y1-y2)*sqrt(3)/6,(y1+y2)/2-(x2-x1) *sqrt(3)/6,n-1);
plotkoch((x1+x2)/2-(y1-y2)*sqrt(3)/6,(y1+y2)/2-(x2-x1)*sqrt(3)/6,(2*x2+x1)/3,(2 *y2+y1)/3,n-1);
plotkoch((2*x2+x1)/3,(2*y2+y1)/3,x2,y2,n-1)
}
else {
x=c(x1,(2*x1+x2)/3,(x1+x2)/2-(y1-y2)*sqrt(3)/6,(2*x2+x1)/3,x2);
y=c(y1,(2*y1+y2)/3,(y1+y2)/2-(x2-x1)*sqrt(3)/6,(2*y2+y1)/3,y2);
polygon(x,y,type="l",col=col)
}
}
plotkoch(0,0,1,0,k)
plotkoch(0.5,sqrt(3)/2,0,0,k)
plotkoch(1,0,0.5,sqrt(3)/2,k)
}
plot.koch(3, col=3)
答案 0 :(得分:3)
以下是使用R中的空间对象的方法,其中包含sp
,rgeos
和raster
个包。
对函数稍作修改,将x
,y
坐标返回给用户(并按正确的顺序):
koch <- function(k) {
yy <- xx <- numeric(0)
Koch <- function(x1, y1, x2, y2, n) {
if (n > 1){
Koch(x1, y1, (2*x1+x2)/3, (2*y1+y2)/3, n-1);
Koch((2*x1+x2)/3, (2*y1+y2)/3, (x1+x2)/2-(y1-y2)*sqrt(3)/6,
(y1+y2)/2-(x2-x1) *sqrt(3)/6, n-1);
Koch((x1+x2)/2-(y1-y2)*sqrt(3)/6, (y1+y2)/2-(x2-x1)*sqrt(3)/6,
(2*x2+x1)/3, (2 *y2+y1)/3, n-1);
Koch((2*x2+x1)/3, (2*y2+y1)/3, x2, y2, n-1)
}
else {
x <- c(x1, (2*x1+x2)/3, (x1+x2)/2-(y1-y2)*sqrt(3)/6, (2*x2+x1)/3, x2);
xx <<- c(xx, x)
y <- c(y1, (2*y1+y2)/3, (y1+y2)/2-(x2-x1)*sqrt(3)/6, (2*y2+y1)/3, y2);
yy <<- c(yy, y)
}
}
Koch(0, 0, 1, 0, k)
Koch(1, 0, 0.5, sqrt(3)/2, k)
Koch(0.5, sqrt(3)/2, 0, 0, k)
xy <- data.frame(x=xx, y=yy)
rbind(unique(xy), xy[1, ])
}
创建颜色渐变:
colr <- colorRampPalette(hcl(h=seq(0, 360, len=100), c=100))
使用koch
函数获取顶点:
xy <- koch(4)
加载空间包并从分形中创建SpatialPolygons
对象并绘制一次以设置绘图区域。
library(sp)
library(rgeos)
library(raster)
poly <- SpatialPolygons(list(Polygons(list(Polygon(xy)), 1)))
plot(poly)
绘制一系列具有所需原点且足够大的半径以覆盖分形多边形(此处我们使用半径r <- 1
)。
r <- 1
mapply(function(theta, col) {
segments(0.5, 0.3, 0.5 + r*cos(theta), 0.3 + r*sin(theta), lwd=3, col=col)
}, seq(0, 360, length=1000)*pi/180, colr(1000))
创建绘图区域和分形多边形之间差异的第二个多边形,并绘制此图(使用col='white'
)以遮挡不需要的渐变区域。
plot(gDifference(as(extent(par('usr')), 'SpatialPolygons'), poly),
col='white', border='white', add=TRUE)
再次绘制多边形。
plot(poly, add=TRUE)
答案 1 :(得分:1)
我会这样做:
x,y
计算angle=atan2(y-y0,x-x0)
其中x0,y0
是koch的雪花中间位置
根据角度计算颜色
如果你使用 HSV 然后hue=angle
并计算目标颜色值(我假设 RGB )。如果你想要可见的光谱颜色,你可以试试我的:
只需将角度范围angle=<0,2*Pi> [rad]
转换为波长l=<400,700> [nm]
即可:
l = 400.0 + (700.0-400.0)*angle/(2.0*M_PI)
渲染像素
<强> [注释] 强>
不使用 R 或 Matlab ,因此您需要自行编码。角度可能需要一些移动以匹配您的坐标系,例如:
const angle0=???; // some shift constant [rad]
angle+=angle0; // or angle=angle0-angle; if the direction is oposite
if (angle>=2.0*M_PI) angle-=2.0*M_PI;
if (angle< 0.0) angle+=2.0*M_PI;
如果您将其绘制为多边形,那么您需要计算每个顶点的颜色而不是每个像素,但是您可能会遇到问题,因为这不是凸多边形。那么如何保证中点颜色???我担心你需要使用某种三角测量法,因为简单的三角形扇形会失败......
唯一显而易见的是填充整个空间的颜色,然后用黑色绘制轮廓,然后从外面用白色填充所有非黑色像素
答案 2 :(得分:1)
我试图解决你的问题。目前它也在雪花之外绘制颜色。如果您可以确定点是否在雪花内部或外部,您应该能够删除df_fill
中的外部点。
在这里,我首先创建用于绘制多边形的data.frame
。然后我为背景颜色创建data.frame
。最后我使用ggplot2
绘制数据。
# creating relevant data
data.koch <- function(k){
df <- data.frame(x = 0,
y = 0,
grp = 0)
plotkoch <- function(x1, y1, x2, y2, n, data){
if (n==1) {
x=c(x1,(2*x1+x2)/3,(x1+x2)/2-(y1-y2)*sqrt(3)/6,(2*x2+x1)/3,x2)
y=c(y1,(2*y1+y2)/3,(y1+y2)/2-(x2-x1)*sqrt(3)/6,(2*y2+y1)/3,y2)
df <- rbind(data, data.frame(x, y, grp=max(data$grp)+1))
}
if (n > 1){
df <- plotkoch(x1,y1,(2*x1+x2)/3,(2*y1+y2)/3,n-1, data = data)
df <- plotkoch((2*x1+x2)/3,(2*y1+y2)/3,(x1+x2)/2-(y1-y2)*sqrt(3)/6,(y1+y2)/2-(x2-x1) *sqrt(3)/6,n-1, data=df)
df <- plotkoch((x1+x2)/2-(y1-y2)*sqrt(3)/6,(y1+y2)/2-(x2-x1)*sqrt(3)/6,(2*x2+x1)/3,(2 *y2+y1)/3,n-1, data=df)
df <- plotkoch((2*x2+x1)/3,(2*y2+y1)/3,x2,y2,n-1, data=df)
}
return(df)
}
df <- plotkoch(0,0,1,0,k, data = df)
df <- plotkoch(0.5,sqrt(3)/2,0,0,k, data = df)
df <- plotkoch(1,0,0.5,sqrt(3)/2,k, data = df)
return(df)
}
# plotting functon
plot.koch <- function(k){
stopifnot(require(ggplot2))
if (is.data.frame(k)) df <- k
else df <- data.koch(k)
# filling data (CHANGE HERE TO GET ONLY INSIDE POINTS)
l <- 500
df_fill <- expand.grid(x=seq(0, 1, length=l),
y=seq(-sqrt(3)/6, sqrt(3)/2, length=l))
df_fill[, "z"] <- atan2(-df_fill[, "y"] + sqrt(3)/6, df_fill[, "x"] - 0.5) + pi/2
df_fill[df_fill[, "z"] < 0, "z"] <- df_fill[df_fill[, "z"] < 0, "z"] + 2*pi
# plotting
ggplot(df, aes(x, y, group=grp)) +
geom_raster(data = df_fill,
aes(fill=z, group=NULL),
hjust = 0,
vjust = 0,
linetype='blank') +
geom_path(data=df, size=1) +
scale_fill_gradientn(colours = rainbow(30), guide = 'none') +
scale_x_continuous(name = '', limits = c(0, 1), expand=c(0, 0)) +
scale_y_continuous(name = '', limits = c(-sqrt(3)/6,sqrt(3)/2), expand=c(0, 0)) +
coord_fixed() +
theme_bw() +
theme(axis.line = element_blank(),
panel.grid = element_blank(),
axis.ticks = element_blank(),
axis.text = element_blank())
}
#
p <- plot.koch(4)
print(p)
答案 3 :(得分:1)
It's my solution with grid package.
##data
koch <- function(k) {
yy <- xx <- numeric(0)
Koch <- function(x1, y1, x2, y2, n) {
if (n > 1) {
Koch(x1, y1, (2 * x1 + x2)/3, (2 * y1 + y2)/3, n - 1)
Koch((2 * x1 + x2)/3, (2 * y1 + y2)/3, (x1 + x2)/2 - (y1 -
y2) * sqrt(3)/6, (y1 + y2)/2 - (x2 - x1) * sqrt(3)/6,
n - 1)
Koch((x1 + x2)/2 - (y1 - y2) * sqrt(3)/6, (y1 + y2)/2 -
(x2 - x1) * sqrt(3)/6, (2 * x2 + x1)/3, (2 * y2 + y1)/3,
n - 1)
Koch((2 * x2 + x1)/3, (2 * y2 + y1)/3, x2, y2, n - 1)
} else {
x <- c(x1, (2 * x1 + x2)/3, (x1 + x2)/2 - (y1 - y2) * sqrt(3)/6,
(2 * x2 + x1)/3, x2)
xx <<- c(xx, x)
y <- c(y1, (2 * y1 + y2)/3, (y1 + y2)/2 - (x2 - x1) * sqrt(3)/6,
(2 * y2 + y1)/3, y2)
yy <<- c(yy, y)
}
}
Koch(0, 0, 1, 0, k)
Koch(1, 0, 0.5, sqrt(3)/2, k)
Koch(0.5, sqrt(3)/2, 0, 0, k)
xy <- data.frame(x = (xx - min(xx))/(max(xx) - min(xx)), y = (yy -
min(yy))/(max(yy) - min(yy)))
rbind(unique(xy), xy[1, ])
}
xy <- koch(5)
##Plot
library(grid)
grid.newpage()
pushViewport(dataViewport(xy$x, xy$y), plotViewport(c(1, 1, 1, 1)))
for (i in 1:nrow(xy)) {
grid.path(x = c(xy[i, 1], xy[i + 1, 1], mean(xy$x)),
y = c(xy[i, 2], xy[i + 1, 2], mean(xy$y)),
gp = gpar(col = rainbow(nrow(xy))[i],
fill = rainbow(nrow(xy))[i]))
}