从python中的单元测试输出数据

时间:2008-11-12 14:10:27

标签: python unit-testing

如果我在python中编写单元测试(使用unittest模块),是否可以从失败的测试中输出数据,所以我可以检查它以帮助推断导致错误的原因?我知道能够创建自定义消息,它可以携带一些信息,但有时您可能会处理更复杂的数据,这些数据不能轻易地表示为字符串。

例如,假设您有一个类Foo,并使用名为testdata的列表中的数据测试方法栏:

class TestBar(unittest.TestCase):
    def runTest(self):
        for t1, t2 in testdata:
            f = Foo(t1)
            self.assertEqual(f.bar(t2), 2)

如果测试失败,我可能想输出t1,t2和/或f,以查看此特定数据导致失败的原因。通过输出,我的意思是在运行测试之后,可以像任何其他变量一样访问变量。

14 个答案:

答案 0 :(得分:67)

对于像我一样的人来到这里寻找一个简单快速的答案,这是非常晚的答案。

在Python 2.7中,您可以使用其他参数msg向错误消息添加信息,如下所示:

self.assertEqual(f.bar(t2), 2, msg='{0}, {1}'.format(t1, t2))

官方文档here

答案 1 :(得分:66)

我们使用日志记录模块。

例如:

import logging
class SomeTest( unittest.TestCase ):
    def testSomething( self ):
        log= logging.getLogger( "SomeTest.testSomething" )
        log.debug( "this= %r", self.this )
        log.debug( "that= %r", self.that )
        # etc.
        self.assertEquals( 3.14, pi )

if __name__ == "__main__":
    logging.basicConfig( stream=sys.stderr )
    logging.getLogger( "SomeTest.testSomething" ).setLevel( logging.DEBUG )
    unittest.main()

这使我们可以打开我们知道失败的特定测试的调试,并且我们需要额外的调试信息。

然而,我首选的方法是不要花费大量时间进行调试,而是花费大量时间编写更精细的测试来揭露问题。

答案 2 :(得分:31)

您可以使用简单的打印语句或任何其他写入stdout的方式。您还可以在测试中的任何位置调用Python调试器。

如果您使用nose来运行测试(我推荐),它将收集每个测试的标准输出,并且仅在测试失败时显示给您,因此您不必使用测试通过时杂乱的输出。

nose还具有自动显示断言中提到的变量的开关,或者在失败的测试中调用调试器。例如-s--nocapture)可以阻止stdout的捕获。

答案 3 :(得分:16)

我认为这不是你想要的,没有办法显示不会失败的变量值,但这可能会帮助你更接近按照你想要的方式输出结果。

您可以使用 TestRunner.run()返回的 TestResult object 进行结果分析和处理。特别是,TestResult.errors和TestResult.failures

关于TestResults对象:

http://docs.python.org/library/unittest.html#id3

有些代码可以指出正确的方向:

>>> import random
>>> import unittest
>>>
>>> class TestSequenceFunctions(unittest.TestCase):
...     def setUp(self):
...         self.seq = range(5)
...     def testshuffle(self):
...         # make sure the shuffled sequence does not lose any elements
...         random.shuffle(self.seq)
...         self.seq.sort()
...         self.assertEqual(self.seq, range(10))
...     def testchoice(self):
...         element = random.choice(self.seq)
...         error_test = 1/0
...         self.assert_(element in self.seq)
...     def testsample(self):
...         self.assertRaises(ValueError, random.sample, self.seq, 20)
...         for element in random.sample(self.seq, 5):
...             self.assert_(element in self.seq)
...
>>> suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
>>> testResult = unittest.TextTestRunner(verbosity=2).run(suite)
testchoice (__main__.TestSequenceFunctions) ... ERROR
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... FAIL

======================================================================
ERROR: testchoice (__main__.TestSequenceFunctions)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "<stdin>", line 11, in testchoice
ZeroDivisionError: integer division or modulo by zero

======================================================================
FAIL: testshuffle (__main__.TestSequenceFunctions)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "<stdin>", line 8, in testshuffle
AssertionError: [0, 1, 2, 3, 4] != [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

----------------------------------------------------------------------
Ran 3 tests in 0.031s

FAILED (failures=1, errors=1)
>>>
>>> testResult.errors
[(<__main__.TestSequenceFunctions testMethod=testchoice>, 'Traceback (most recent call last):\n  File "<stdin>"
, line 11, in testchoice\nZeroDivisionError: integer division or modulo by zero\n')]
>>>
>>> testResult.failures
[(<__main__.TestSequenceFunctions testMethod=testshuffle>, 'Traceback (most recent call last):\n  File "<stdin>
", line 8, in testshuffle\nAssertionError: [0, 1, 2, 3, 4] != [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]\n')]
>>>

答案 4 :(得分:5)

我想我可能一直在思考这个问题。我提出的一种方法就是完成工作,只需要有一个全局变量,它可以累积诊断数据。

像这样:

log1 = dict()
class TestBar(unittest.TestCase):
    def runTest(self):
        for t1, t2 in testdata:
            f = Foo(t1) 
            if f.bar(t2) != 2: 
                log1("TestBar.runTest") = (f, t1, t2)
                self.fail("f.bar(t2) != 2")

感谢您的回复。他们给了我一些关于如何记录单元测试信息的替代方法。

答案 5 :(得分:5)

另一种选择 - 启动测试失败的调试器。

尝试使用Testoob运行测试(它将运行您的unittest套件而不进行更改),并且您可以使用'--debug'命令行开关在测试失败时打开调试器。

这是Windows上的终端会话:

C:\work> testoob tests.py --debug
F
Debugging for failure in test: test_foo (tests.MyTests.test_foo)
> c:\python25\lib\unittest.py(334)failUnlessEqual()
-> (msg or '%r != %r' % (first, second))
(Pdb) up
> c:\work\tests.py(6)test_foo()
-> self.assertEqual(x, y)
(Pdb) l
  1     from unittest import TestCase
  2     class MyTests(TestCase):
  3       def test_foo(self):
  4         x = 1
  5         y = 2
  6  ->     self.assertEqual(x, y)
[EOF]
(Pdb)

答案 6 :(得分:5)

我使用的方法非常简单。我只是将其记录为警告,以便它实际显示出来。

import logging

class TestBar(unittest.TestCase):
    def runTest(self):

       #this line is important
       logging.basicConfig()
       log = logging.getLogger("LOG")

       for t1, t2 in testdata:
         f = Foo(t1)
         self.assertEqual(f.bar(t2), 2)
         log.warning(t1)

答案 7 :(得分:2)

使用记录:

import unittest
import logging
import inspect
import os

logging_level = logging.INFO

try:
    log_file = os.environ["LOG_FILE"]
except KeyError:
    log_file = None

def logger(stack=None):
    if not hasattr(logger, "initialized"):
        logging.basicConfig(filename=log_file, level=logging_level)
        logger.initialized = True
    if not stack:
        stack = inspect.stack()
    name = stack[1][3]
    try:
        name = stack[1][0].f_locals["self"].__class__.__name__ + "." + name
    except KeyError:
        pass
    return logging.getLogger(name)

def todo(msg):
    logger(inspect.stack()).warning("TODO: {}".format(msg))

def get_pi():
    logger().info("sorry, I know only three digits")
    return 3.14

class Test(unittest.TestCase):

    def testName(self):
        todo("use a better get_pi")
        pi = get_pi()
        logger().info("pi = {}".format(pi))
        todo("check more digits in pi")
        self.assertAlmostEqual(pi, 3.14)
        logger().debug("end of this test")
        pass

用法:

# LOG_FILE=/tmp/log python3 -m unittest LoggerDemo
.
----------------------------------------------------------------------
Ran 1 test in 0.047s

OK
# cat /tmp/log
WARNING:Test.testName:TODO: use a better get_pi
INFO:get_pi:sorry, I know only three digits
INFO:Test.testName:pi = 3.14
WARNING:Test.testName:TODO: check more digits in pi

如果您未设置LOG_FILE,则记录将转到stderr

答案 8 :(得分:2)

You can use logging module for that.

So in the unit test code, use:

import logging as log

def test_foo(self):
    log.debug("Some debug message.")
    log.info("Some info message.")
    log.warning("Some warning message.")
    log.error("Some error message.")

By default warnings and errors are outputted to /dev/stderr, so they should be visible on the console.

To customize logs (such as formatting), try the following sample:

# Set-up logger
if args.verbose or args.debug:
    logging.basicConfig( stream=sys.stdout )
    root = logging.getLogger()
    root.setLevel(logging.INFO if args.verbose else logging.DEBUG)
    ch = logging.StreamHandler(sys.stdout)
    ch.setLevel(logging.INFO if args.verbose else logging.DEBUG)
    ch.setFormatter(logging.Formatter('%(asctime)s %(levelname)s: %(name)s: %(message)s'))
    root.addHandler(ch)
else:
    logging.basicConfig(stream=sys.stderr)

答案 9 :(得分:2)

在这些情况下,我要做的是在我的应用程序中添加一些log.debug()消息。由于默认日志记录级别为WARNING,因此这些消息不会在正常执行中显示。

然后,在unittest中我将日志记录级别更改为DEBUG,以便在运行时显示此类消息。

import logging

log.debug("Some messages to be shown just when debugging or unittesting")

在单元测试中:

# Set log level
loglevel = logging.DEBUG
logging.basicConfig(level=loglevel)

查看完整示例:

这是daikiri.py,这是一个以其名称和价格实现Daikiri的基本类。方法make_discount()在应用给定折扣后返回特定daikiri的价格:

import logging

log = logging.getLogger(__name__)

class Daikiri(object):
    def __init__(self, name, price):
        self.name = name
        self.price = price

    def make_discount(self, percentage):
        log.debug("Deducting discount...")  # I want to see this message
        return self.price * percentage

然后,我创建了一个单元测试test_daikiri.py,用于检查其用法:

import unittest
import logging
from .daikiri import Daikiri


class TestDaikiri(unittest.TestCase):
    def setUp(self):
        # Changing log level to DEBUG
        loglevel = logging.DEBUG
        logging.basicConfig(level=loglevel)

        self.mydaikiri = Daikiri("cuban", 25)

    def test_drop_price(self):
        new_price = self.mydaikiri.make_discount(0)
        self.assertEqual(new_price, 0)

if __name__ == "__main__":
    unittest.main()

因此,当我执行它时,我收到log.debug条消息:

$ python -m test_daikiri
DEBUG:daikiri:Deducting discount...
.
----------------------------------------------------------------------
Ran 1 test in 0.000s

OK

答案 10 :(得分:1)

inspect.trace将在抛出异常后让您获取局部变量。然后,您可以使用类似下面的装饰器来包装单元测试,以便在验尸期间保存这些局部变量以进行检查。

import random
import unittest
import inspect


def store_result(f):
    """
    Store the results of a test
    On success, store the return value.
    On failure, store the local variables where the exception was thrown.
    """
    def wrapped(self):
        if 'results' not in self.__dict__:
            self.results = {}
        # If a test throws an exception, store local variables in results:
        try:
            result = f(self)
        except Exception as e:
            self.results[f.__name__] = {'success':False, 'locals':inspect.trace()[-1][0].f_locals}
            raise e
        self.results[f.__name__] = {'success':True, 'result':result}
        return result
    return wrapped

def suite_results(suite):
    """
    Get all the results from a test suite
    """
    ans = {}
    for test in suite:
        if 'results' in test.__dict__:
            ans.update(test.results)
    return ans

# Example:
class TestSequenceFunctions(unittest.TestCase):

    def setUp(self):
        self.seq = range(10)

    @store_result
    def test_shuffle(self):
        # make sure the shuffled sequence does not lose any elements
        random.shuffle(self.seq)
        self.seq.sort()
        self.assertEqual(self.seq, range(10))
        # should raise an exception for an immutable sequence
        self.assertRaises(TypeError, random.shuffle, (1,2,3))
        return {1:2}

    @store_result
    def test_choice(self):
        element = random.choice(self.seq)
        self.assertTrue(element in self.seq)
        return {7:2}

    @store_result
    def test_sample(self):
        x = 799
        with self.assertRaises(ValueError):
            random.sample(self.seq, 20)
        for element in random.sample(self.seq, 5):
            self.assertTrue(element in self.seq)
        return {1:99999}


suite = unittest.TestLoader().loadTestsFromTestCase(TestSequenceFunctions)
unittest.TextTestRunner(verbosity=2).run(suite)

from pprint import pprint
pprint(suite_results(suite))

最后一行将打印测试成功的返回值和局部变量,在本例中为x,当它失败时:

{'test_choice': {'result': {7: 2}, 'success': True},
 'test_sample': {'locals': {'self': <__main__.TestSequenceFunctions testMethod=test_sample>,
                            'x': 799},
                 'success': False},
 'test_shuffle': {'result': {1: 2}, 'success': True}}

Hardetgøy: - )

答案 11 :(得分:1)

您也可以使用 --locals 选项:python3 -m unittest --locals

来自python3 -m unittest -h--locals Show local variables in tracebacks

答案 12 :(得分:0)

如何捕获断言失败产生的异常?在您的catch块中,您可以输出您想要的数据。然后,当你完成后,你可以重新抛出异常。测试运行器可能不知道差异。

免责声明:我没有尝试使用python的单元测试框架,但与其他单元测试框架一起使用。

答案 13 :(得分:-1)

扩展@ F.C.回答,这对我很有用:

class MyTest(unittest.TestCase):
    def messenger(self, message):
        try:
            self.assertEqual(1, 2, msg=message)
        except AssertionError as e:      
            print "\nMESSENGER OUTPUT: %s" % str(e),