我需要在函数内更新模型公式。这是一个例子:
A <- runif(n = 200) # generate some data
B <- runif(n = 200)
P <- 1/(1+exp(.5-A)) # generate event probability
outcome <- runif(n = 200) < P # generate outcome
my.function <- function(model, data.to.add) { # this is the function for updating the formula
new.model <- update(object = model, formula. = ~ . + data.to.add)
return (new.model)
}
test <- my.function(model = glm(outcome ~ B, family = binomial(link="logit")), data.to.add = A)
不幸的是,执行此代码会引发如下错误:
Error in eval(expr, envir, enclos) : object 'data.to.add' not found
似乎my.function
无法提供变量data.to.add
到update
函数的值。如何为另一个函数中的update
函数提供正确的变量范围,我该怎么办?
编辑:好的,如果要传递给要更新的函数的变量在全局环境中,那么你的解决方案是好的,现在如果我必须在函数内部定义变量,由于较少的范围,我再次得到错误变量:
A <- runif(n = 200) # generate some data
P <- 1/(1+exp(.5-A)) # generate event probability
outcome <- runif(n = 200) < P # generate outcome
nested.update<-function(model) {
B<-runif(n = 200)
my.function <- function(model, data.to.add) { # this is the function for updating the formula
data.to.add <- paste('. ~ . +', deparse(substitute(data.to.add)), sep = "")
new.model <- update(object = model, formula. = data.to.add)
return (new.model)
}
return(my.function(model = model, data.to.add = B))
}
nested.update(model = glm(outcome ~ A, family = binomial(link="logit")))
答案 0 :(得分:2)
修改
my.function <- function(model, data.to.add) { # this is the function for updating the formula
data.to.add <- sprintf('. ~ . + %s', deparse(substitute(data.to.add)))
new.model <- update(object = model, formula. = data.to.add)
return (new.model)
}
my.function(lm(mpg ~ wt, data = mtcars), disp)
# Call:
# lm(formula = mpg ~ wt + disp, data = mtcars)
#
# Coefficients:
# (Intercept) wt disp
# 34.96055 -3.35083 -0.01772
my.function(lm(mpg ~ wt, data = mtcars), hp)
# Call:
# lm(formula = mpg ~ wt + hp, data = mtcars)
#
# Coefficients:
# (Intercept) wt hp
# 37.22727 -3.87783 -0.03177
由于您要将公式传递给update.formula
,因此R发送update.default
而不是默认update
。参数名称为old
和new
。在update.default
中,您现在使用的名称为model
和formula.
。
还使用解决方法将正确的变量名称添加到公式
中my.function <- function(model, data.to.add) { # this is the function for updating the formula
data.to.add <- sprintf('. ~ . + %s', deparse(substitute(data.to.add)))
new.model <- update(old = model, new = data.to.add)
return (new.model)
}
my.function(y ~ a, b)
# y ~ a + b
my.function(y ~ a, c)
# y ~ a + c