我想修改scikit-lern实现的ROC曲线,所以我尝试了以下内容:
from sklearn.metrics import roc_curve, auc
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[:, 1])
roc_auc = auc(false_positive_rate, recall)
plt.title('Receiver Operating Characteristic')
plt.plot(false_positive_rate, recall, 'b', label='AUC = %0.2f' % roc_auc)
plt.legend(loc='lower right')
plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.ylabel('Recall')
plt.xlabel('Fall-out')
plt.show()
这是输出:
Traceback (most recent call last):
File "/Users/user/script.py", line 62, in <module>
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[:, 1])
IndexError: too many indices for array
然后从previous question我尝试了这个:
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction)
得到了这个追溯:
/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py:705: DeprecationWarning: elementwise comparison failed; this will raise the error in the future.
not (np.all(classes == [0, 1]) or
/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py:706: DeprecationWarning: elementwise comparison failed; this will raise the error in the future.
np.all(classes == [-1, 1]) or
Traceback (most recent call last):
File "/Users/user/PycharmProjects/TESIS_CODE/clasificacion_simple_v1.py", line 62, in <module>
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction)
File "/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py", line 890, in roc_curve
y_true, y_score, pos_label=pos_label, sample_weight=sample_weight)
File "/usr/local/lib/python2.7/site-packages/sklearn/metrics/metrics.py", line 710, in _binary_clf_curve
raise ValueError("Data is not binary and pos_label is not specified")
ValueError: Data is not binary and pos_label is not specified
然后我也尝试了这个:
false_positive_rate, recall, thresholds = roc_curve(y_test, prediction[0].values)
这是追溯:
AttributeError: 'numpy.int64' object has no attribute 'values'
有关如何正确绘制此指标的想法吗?提前谢谢!
这是预测变量的形状:
print prediction.shape
(650,)
这是testing_matrix: (650, 9596)
答案 0 :(得分:1)
变量prediction
必须是1d array
(形状与y_test
相同)。您可以通过检查形状属性来检查,例如y_test.shape
。我想
prediction[0].values
返回
AttributeError: 'numpy.int64' object has no attribute 'values'
因为你试图在预测元素上调用.values
。
<强>更新强>
ValueError: Data is not binary and pos_label is not specified
我之前没有注意到这一点。如果您的类不是二进制文件,则必须在pos_label
中指定roc_curve
参数,以便绘制一个类与其余类。为此,您需要将类标签设为整数。您可以使用:
from sklearn.preprocessing import LabelEncoder
class_labels = LabelEncoder()
prediction_le = class_lables.fit_transform(prediction)
pediction_le
返回类重新编码int
更新2:
您的预测器只返回一个类,因此您无法绘制ROC曲线