我想生成特定网格大小的所有独特的填字游戏网格(4x4是一个很好的大小)。所有可能的谜题,包括非独特的谜题,都由具有网格区域长度的二进制字符串表示(在4x4的情况下为16),因此所有可能的4x4谜题都由0范围内的所有数字的二进制形式表示到2 ^ 16。
生成这些很容易,但我很好奇是否有人有一个很好的解决方案,如何以编程方式消除无效和重复的情况。例如,所有具有单列或单行的拼图在功能上是相同的,因此消除了这8个案例中的7个。此外,根据填字游戏惯例,所有正方形必须是连续的。我已成功删除所有重复的结构,但我的解决方案需要几分钟才能执行,可能并不理想。我对如何检测连续性感到茫然,所以如果有人对此有所了解,我会非常感激。
我更喜欢python中的解决方案,但用你喜欢的任何语言写。如果有人想要,我可以发布我的python代码来生成所有网格并删除重复项,尽可能慢。
答案 0 :(得分:3)
免责声明:除了所有测试之外,大多数未经测试做通过过滤掉一些网格而产生影响,并修复了一些发现的错误。当然可以优化。
def is_valid_grid (n):
row_mask = ((1 << n) - 1)
top_row = row_mask << n * (n - 1)
left_column = 0
right_column = 0
for row in range (n):
left_column |= (1 << (n - 1)) << row * n
right_column |= 1 << row * n
def neighborhood (grid):
return (((grid & ~left_column) << 1)
| ((grid & ~right_column) >> 1)
| ((grid & ~top_row) << n)
| (grid >> n))
def is_contiguous (grid):
# Start with a single bit and expand with neighbors as long as
# possible. If we arrive at the starting grid then it is
# contiguous, else not.
part = (grid ^ (grid & (grid - 1)))
while True:
expanded = (part | (neighborhood (part) & grid))
if expanded != part:
part = expanded
else:
break
return part == grid
def flip_y (grid):
rows = []
for k in range (n):
rows.append (grid & row_mask)
grid >>= n
for row in rows:
grid = (grid << n) | row
return grid
def rotate (grid):
rotated = 0
for x in range (n):
for y in range (n):
if grid & (1 << (n * y + x)):
rotated |= (1 << (n * x + (n - 1 - y)))
return rotated
def transform (grid):
yield flip_y (grid)
for k in range (3):
grid = rotate (grid)
yield grid
yield flip_y (grid)
def do_is_valid_grid (grid):
# Any square in the topmost row?
if not (grid & top_row):
return False
# Any square in the leftmost column?
if not (grid & left_column):
return False
# Is contiguous?
if not is_contiguous (grid):
return False
# Of all transformations, we pick only that which gives the
# smallest number.
for transformation in transform (grid):
# A transformation can produce a grid without a square in the topmost row and/or leftmost column.
while not (transformation & top_row):
transformation <<= n
while not (transformation & left_column):
transformation <<= 1
if transformation < grid:
return False
return True
return do_is_valid_grid
def valid_grids (n):
do_is_valid_grid = is_valid_grid (n)
for grid in range (2 ** (n * n)):
if do_is_valid_grid (grid):
yield grid
for grid in valid_grids (4):
print grid