我使用嵌入式东西,我有一些管理硬件的软件模块。此模块具有状态,并且状态转换很复杂:根据事件,模块可以从状态A
转到状态B
或可能转到C
。但是,当它退出某个状态时,它应该对硬件执行一些操作,以使其保持正确状态。
对于相当简单的模块,我只有几个这样的函数:
enum state_e {
MY_STATE__A,
MY_STATE__B,
};
static enum state_e _cur_state;
void state_on_off(enum state_e state, bool on)
{
switch (state){
case MY_STATE__A:
if (on){
//-- entering the state A
prepare_hardware_1(for_state_a);
prepare_hardware_2(for_state_a);
} else {
//-- exiting the state A
finalize_hardware_2(for_state_a);
finalize_hardware_1(for_state_a);
}
break;
case MY_STATE__B:
if (on){
//-- entering the state B
prepare_hardware_1(for_state_b);
prepare_hardware_2(for_state_b);
} else {
//-- exiting the state B
finalize_hardware_2(for_state_b);
finalize_hardware_1(for_state_b);
}
break;
}
}
void state_set(enum state_e new_state)
{
state_on_off(_cur_state, false);
_cur_state = new_state;
state_on_off(_cur_state, true);
}
显然,我们需要为_state_on_off()
函数中的所有状态保留所有必要的操作,当我们需要移动到另一个状态时,我们只需调用_state_set(new_state)
并且状态转换顺利进行,而不是方向:执行所有需要的操作。
但它仅适用于简单的情况。如果我们在状态MY_STATE__B
和MY_STATE__C
之间存在共同点,那么当状态从MY_STATE__B
更改为MY_STATE__C
并返回时,我们应该只执行缩短的解构/构造?但是当我们去其他一些州(比如说MY_STATE__A
)时,我们应该进行全面破坏。
想到的是子状态。因此,我们有一个州MY_STATE__BC
,以及MY_BC_SUBSTATE__B
和MY_BC_SUBSTATE__C
等子类;当然,我们有自己的功能,如_state_bc_on_off()
。即使这已经是一种痛苦,但想象一些更复杂的事情:它变得非常糟糕。
那么,这类事情的最佳做法是什么?
答案 0 :(得分:2)
稍微更通用的状态机
转换以结构数组编码。序列由switch语句选择,每个序列调用一个或多个原语。
#define stA 0x00000001 // bit mask for state A
#define stB 0x00000002 // bit mask for state B
#define stC 0x00000004 // bit mask for state C
#define stAny 0xffffffff // matches any state
enum { seqXtoY, seqError, seqEnterA, seqExitA, seqEnterB, seqExitB, seqEnableC, seqDisableC, seqEnd };
typedef struct
{
int oldState; // bit mask that represents one or more states that we're transitioning from
int newState; // bit mask that represents one or more states that we're transitioning to
int seqList[10]; // an array of sequences that need to be executed
}
stTransition;
static stTransition transition[] =
{
// transitions from state A to B or C
{ stA, stB, { seqExitA, seqXtoY, seqEnterB, seqEnd } },
{ stA, stC, { seqExitA, seqXtoY, seqEnableC, seqEnterB, seqEnd } },
// transitions from state B to A or C
{ stB, stA, { seqExitB, seqXtoY, seqEnterA, seqEnd } },
{ stB, stC, { seqXtoY, seqEnableC, seqEnd } },
// transitions from states C to A or B
{ stC, stA, { seqDisableC, seqExitB, seqXtoY, seqEnterA, seqEnd } },
{ stC, stB, { seqDisableC, seqXtoY, seqEnd } },
// any other transition (should never get here)
{ stAny, stAny, { seqError, seqEnd } }
};
static int currentState = stA;
void executeSequence( int sequence )
{
switch ( sequence )
{
case seqEnterA:
prepare_hardware_1(for_state_a);
prepare_hardware_2(for_state_a);
break;
case seqExitA:
finalize_hardware_2(for_state_a);
finalize_hardware_1(for_state_a);
break;
case seqEnterB:
prepare_hardware_1(for_state_b);
prepare_hardware_2(for_state_b);
break;
case seqExitB:
finalize_hardware_2(for_state_b);
finalize_hardware_1(for_state_b);
break;
case seqEnableC:
enable_hardware_3();
break;
case seqDisableC:
disable_hardware_3();
break;
}
}
void executeTransition( int newState )
{
if ( newState == currentState )
return;
// search the transition table to find the entry that matches the old and new state
stTransition *tptr;
for ( tptr = transition; tptr->seqList[0] != seqError; tptr++ )
if ( (tptr->oldState & currentState) && (tptr->newState & newState) )
break;
// execute the sequence list
int *seqptr;
for ( seqptr = tptr->seqList; *seqptr != seqEnd; seqptr++ )
{
if ( *seqptr == seqXtoY )
currentState = newState;
else if ( *seqptr == seqError )
printf( "The state table is missing the transition from %d to %d\n", currentState, newState );
else
executeSequence( *seqptr );
}
// if the seqList doesn't have an explicit update, then we update at the end
currentState = newState;
}