任何人都知道在byte []数组中搜索/匹配字节模式然后返回位置的有效方法。
例如
byte[] pattern = new byte[] {12,3,5,76,8,0,6,125};
byte[] toBeSearched = new byte[] {23,36,43,76,125,56,34,234,12,3,5,76,8,0,6,125,234,56,211,122,22,4,7,89,76,64,12,3,5,76,8,0,6,125}
答案 0 :(得分:51)
我可以提出一些不涉及创建字符串,复制数组或不安全代码的内容:
using System;
using System.Collections.Generic;
static class ByteArrayRocks {
static readonly int [] Empty = new int [0];
public static int [] Locate (this byte [] self, byte [] candidate)
{
if (IsEmptyLocate (self, candidate))
return Empty;
var list = new List<int> ();
for (int i = 0; i < self.Length; i++) {
if (!IsMatch (self, i, candidate))
continue;
list.Add (i);
}
return list.Count == 0 ? Empty : list.ToArray ();
}
static bool IsMatch (byte [] array, int position, byte [] candidate)
{
if (candidate.Length > (array.Length - position))
return false;
for (int i = 0; i < candidate.Length; i++)
if (array [position + i] != candidate [i])
return false;
return true;
}
static bool IsEmptyLocate (byte [] array, byte [] candidate)
{
return array == null
|| candidate == null
|| array.Length == 0
|| candidate.Length == 0
|| candidate.Length > array.Length;
}
static void Main ()
{
var data = new byte [] { 23, 36, 43, 76, 125, 56, 34, 234, 12, 3, 5, 76, 8, 0, 6, 125, 234, 56, 211, 122, 22, 4, 7, 89, 76, 64, 12, 3, 5, 76, 8, 0, 6, 125 };
var pattern = new byte [] { 12, 3, 5, 76, 8, 0, 6, 125 };
foreach (var position in data.Locate (pattern))
Console.WriteLine (position);
}
}
编辑(通过IAbstract) - 此处移动post的内容,因为它不是答案
出于好奇,我用不同的答案创建了一个小基准。
以下是一百万次迭代的结果:
solution [Locate]: 00:00:00.7714027
solution [FindAll]: 00:00:03.5404399
solution [SearchBytePattern]: 00:00:01.1105190
solution [MatchBytePattern]: 00:00:03.0658212
答案 1 :(得分:25)
使用 LINQ方法。
public static IEnumerable<int> PatternAt(byte[] source, byte[] pattern)
{
for (int i = 0; i < source.Length; i++)
{
if (source.Skip(i).Take(pattern.Length).SequenceEqual(pattern))
{
yield return i;
}
}
}
很简单!
答案 2 :(得分:12)
答案 3 :(得分:11)
最初我发布了一些我用过的旧代码但对Jb Evain的benchmarks感到好奇。我发现我的解决方案很愚蠢。似乎bruno conde的SearchBytePattern是最快的。我无法理解为什么特别是因为他使用了Array.Copy和Extension方法。但是在Jb的测试中有证据,所以对布鲁诺赞不绝口。
我进一步简化了比特,所以希望这将是最清晰,最简单的解决方案。 (bruno conde所做的所有努力)增强功能是:
转换为扩展方法
public static List<int> IndexOfSequence(this byte[] buffer, byte[] pattern, int startIndex)
{
List<int> positions = new List<int>();
int i = Array.IndexOf<byte>(buffer, pattern[0], startIndex);
while (i >= 0 && i <= buffer.Length - pattern.Length)
{
byte[] segment = new byte[pattern.Length];
Buffer.BlockCopy(buffer, i, segment, 0, pattern.Length);
if (segment.SequenceEqual<byte>(pattern))
positions.Add(i);
i = Array.IndexOf<byte>(buffer, pattern[0], i + pattern.Length);
}
return positions;
}
答案 4 :(得分:7)
我的解决方案:
class Program
{
public static void Main()
{
byte[] pattern = new byte[] {12,3,5,76,8,0,6,125};
byte[] toBeSearched = new byte[] { 23, 36, 43, 76, 125, 56, 34, 234, 12, 3, 5, 76, 8, 0, 6, 125, 234, 56, 211, 122, 22, 4, 7, 89, 76, 64, 12, 3, 5, 76, 8, 0, 6, 125};
List<int> positions = SearchBytePattern(pattern, toBeSearched);
foreach (var item in positions)
{
Console.WriteLine("Pattern matched at pos {0}", item);
}
}
static public List<int> SearchBytePattern(byte[] pattern, byte[] bytes)
{
List<int> positions = new List<int>();
int patternLength = pattern.Length;
int totalLength = bytes.Length;
byte firstMatchByte = pattern[0];
for (int i = 0; i < totalLength; i++)
{
if (firstMatchByte == bytes[i] && totalLength - i >= patternLength)
{
byte[] match = new byte[patternLength];
Array.Copy(bytes, i, match, 0, patternLength);
if (match.SequenceEqual<byte>(pattern))
{
positions.Add(i);
i += patternLength - 1;
}
}
}
return positions;
}
}
答案 5 :(得分:5)
这是我的提议,更简单,更快:
int Search(byte[] src, byte[] pattern)
{
int c = src.Length - pattern.Length + 1;
int j;
for (int i = 0; i < c; i++)
{
if (src[i] != pattern[0]) continue;
for (j = pattern.Length - 1; j >= 1 && src[i + j] == pattern[j]; j--) ;
if (j == 0) return i;
}
return -1;
}
答案 6 :(得分:4)
我错过了一个LINQ方法/答案: - )
/// <summary>
/// Searches in the haystack array for the given needle using the default equality operator and returns the index at which the needle starts.
/// </summary>
/// <typeparam name="T">Type of the arrays.</typeparam>
/// <param name="haystack">Sequence to operate on.</param>
/// <param name="needle">Sequence to search for.</param>
/// <returns>Index of the needle within the haystack or -1 if the needle isn't contained.</returns>
public static IEnumerable<int> IndexOf<T>(this T[] haystack, T[] needle)
{
if ((needle != null) && (haystack.Length >= needle.Length))
{
for (int l = 0; l < haystack.Length - needle.Length + 1; l++)
{
if (!needle.Where((data, index) => !haystack[l + index].Equals(data)).Any())
{
yield return l;
}
}
}
}
答案 7 :(得分:3)
我上面的Foubar答案的版本,它避免了搜索大海捞针的末尾,并允许指定起始偏移量。假设针头不是空的或比干草堆长。
public static unsafe long IndexOf(this byte[] haystack, byte[] needle, long startOffset = 0)
{
fixed (byte* h = haystack) fixed (byte* n = needle)
{
for (byte* hNext = h + startOffset, hEnd = h + haystack.LongLength + 1 - needle.LongLength, nEnd = n + needle.LongLength; hNext < hEnd; hNext++)
for (byte* hInc = hNext, nInc = n; *nInc == *hInc; hInc++)
if (++nInc == nEnd)
return hNext - h;
return -1;
}
}
答案 8 :(得分:2)
Jb Evain的回答是:
for (int i = 0; i < self.Length; i++) {
if (!IsMatch (self, i, candidate))
continue;
list.Add (i);
}
然后IsMatch函数首先检查candidate
是否超出了被搜索数组的长度。
如果编码for
循环,这将更有效:
for (int i = 0, n = self.Length - candidate.Length + 1; i < n; ++i) {
if (!IsMatch (self, i, candidate))
continue;
list.Add (i);
}
此时 还可以从IsMatch
开始消除测试,只要您通过前提条件进行合同,就永远不要用“非法”参数调用它。
注意:修复了2019年的一个错误。
答案 9 :(得分:2)
这些是您可以使用的最简单,最快速的方法,并且没有比这些更快的方法。这是不安全的,但这就是我们使用指针的速度。所以在这里我向你提供我使用搜索单个的扩展方法,以及出现的索引列表。我想说这是最干净的代码。
public static unsafe long IndexOf(this byte[] Haystack, byte[] Needle)
{
fixed (byte* H = Haystack) fixed (byte* N = Needle)
{
long i = 0;
for (byte* hNext = H, hEnd = H + Haystack.LongLength; hNext < hEnd; i++, hNext++)
{
bool Found = true;
for (byte* hInc = hNext, nInc = N, nEnd = N + Needle.LongLength; Found && nInc < nEnd; Found = *nInc == *hInc, nInc++, hInc++) ;
if (Found) return i;
}
return -1;
}
}
public static unsafe List<long> IndexesOf(this byte[] Haystack, byte[] Needle)
{
List<long> Indexes = new List<long>();
fixed (byte* H = Haystack) fixed (byte* N = Needle)
{
long i = 0;
for (byte* hNext = H, hEnd = H + Haystack.LongLength; hNext < hEnd; i++, hNext++)
{
bool Found = true;
for (byte* hInc = hNext, nInc = N, nEnd = N + Needle.LongLength; Found && nInc < nEnd; Found = *nInc == *hInc, nInc++, hInc++) ;
if (Found) Indexes.Add(i);
}
return Indexes;
}
}
使用Locate进行基准测试,速度提高1.2-1.4倍
答案 10 :(得分:1)
我使用答案中的提示和Alnitak的答案创建了一个新功能。
public static List<Int32> LocateSubset(Byte[] superSet, Byte[] subSet)
{
if ((superSet == null) || (subSet == null))
{
throw new ArgumentNullException();
}
if ((superSet.Length < subSet.Length) || (superSet.Length == 0) || (subSet.Length == 0))
{
return new List<Int32>();
}
var result = new List<Int32>();
Int32 currentIndex = 0;
Int32 maxIndex = superSet.Length - subSet.Length;
while (currentIndex < maxIndex)
{
Int32 matchCount = CountMatches(superSet, currentIndex, subSet);
if (matchCount == subSet.Length)
{
result.Add(currentIndex);
}
currentIndex++;
if (matchCount > 0)
{
currentIndex += matchCount - 1;
}
}
return result;
}
private static Int32 CountMatches(Byte[] superSet, int startIndex, Byte[] subSet)
{
Int32 currentOffset = 0;
while (currentOffset < subSet.Length)
{
if (superSet[startIndex + currentOffset] != subSet[currentOffset])
{
break;
}
currentOffset++;
}
return currentOffset;
}
我唯一不高兴的部分是
currentIndex++;
if (matchCount > 0)
{
currentIndex += matchCount - 1;
}
部分...我想使用if else来避免-1,但这会导致更好的分支预测(虽然我不确定它会那么重要)..
答案 11 :(得分:1)
为什么简单难懂?这可以使用for循环以任何语言完成。这是C#中的一个:
using System; using System.Collections.Generic; namespace BinarySearch { class Program { static void Main(string[] args) { byte[] pattern = new byte[] {12,3,5,76,8,0,6,125}; byte[] toBeSearched = new byte[] {23,36,43,76,125,56,34,234,12,3,5,76,8,0,6,125,234,56,211,
122,22,4,7,89,76,64,12,3,5,76,8,0,6,125}; List<int> occurences = findOccurences(toBeSearched, pattern); foreach(int occurence in occurences) { Console.WriteLine("Found match starting at 0-based index: " + occurence); } } static List<int> findOccurences(byte[] haystack, byte[] needle) { List<int> occurences = new List<int>(); for (int i = 0; i < haystack.Length; i++) { if (needle[0] == haystack[i]) { bool found = true; int j, k; for (j = 0, k = i; j < needle.Length; j++, k++) { if (k >= haystack.Length || needle[j] != haystack[k]) { found = false; break; } } if (found) { occurences.Add(i - 1); i = k; } } } return occurences; } } }
答案 12 :(得分:1)
感谢您抽出时间......
在我提出问题之前,这是我正在使用/测试的代码... 我问这个问题的原因是我确信我没有使用最佳代码来做到这一点......所以再次感谢您抽出宝贵的时间!
private static int CountPatternMatches(byte[] pattern, byte[] bytes)
{
int counter = 0;
for (int i = 0; i < bytes.Length; i++)
{
if (bytes[i] == pattern[0] && (i + pattern.Length) < bytes.Length)
{
for (int x = 1; x < pattern.Length; x++)
{
if (pattern[x] != bytes[x+i])
{
break;
}
if (x == pattern.Length -1)
{
counter++;
i = i + pattern.Length;
}
}
}
}
return counter;
}
任何人在我的代码中看到任何错误?这被认为是一种hackish方法吗? 我已经尝试过你们发布的几乎所有样本,我似乎在匹配结果中得到了一些变化。我用~10Mb字节数组作为我的toBeSearched数组运行我的测试。
答案 13 :(得分:1)
速度不是万能的。你有没有检查它们的一致性?
我没有测试此处列出的所有代码。我测试了自己的代码(我承认并不完全一致)和IndexOfSequence。我发现,对于许多测试,IndexOfSequence比我的代码快得多,但经过反复测试,我发现它不太一致。特别是在数组末尾找到模式似乎最麻烦,但有时它会在数组中间错过它们。
我的测试代码不是为提高效率而设计的,我只想拥有一堆随机数据,里面有一些已知的字符串。该测试模式大致类似于http表单上载流中的边界标记。这就是我在查看这段代码时所寻找的内容,所以我想我会用我要搜索的数据来测试它。看起来模式越长,IndexOfSequence就越会错过一个值。
private static void TestMethod()
{
Random rnd = new Random(DateTime.Now.Millisecond);
string Pattern = "-------------------------------65498495198498";
byte[] pattern = Encoding.ASCII.GetBytes(Pattern);
byte[] testBytes;
int count = 3;
for (int i = 0; i < 100; i++)
{
StringBuilder TestString = new StringBuilder(2500);
TestString.Append(Pattern);
byte[] buf = new byte[1000];
rnd.NextBytes(buf);
TestString.Append(Encoding.ASCII.GetString(buf));
TestString.Append(Pattern);
rnd.NextBytes(buf);
TestString.Append(Encoding.ASCII.GetString(buf));
TestString.Append(Pattern);
testBytes = Encoding.ASCII.GetBytes(TestString.ToString());
List<int> idx = IndexOfSequence(ref testBytes, pattern, 0);
if (idx.Count != count)
{
Console.Write("change from {0} to {1} on iteration {2}: ", count, idx.Count, i);
foreach (int ix in idx)
{
Console.Write("{0}, ", ix);
}
Console.WriteLine();
count = idx.Count;
}
}
Console.WriteLine("Press ENTER to exit");
Console.ReadLine();
}
(显然我将IndexOfSequence从扩展转换回此测试的常规方法)
以下是我输出的示例运行:
change from 3 to 2 on iteration 1: 0, 2090,
change from 2 to 3 on iteration 2: 0, 1045, 2090,
change from 3 to 2 on iteration 3: 0, 1045,
change from 2 to 3 on iteration 4: 0, 1045, 2090,
change from 3 to 2 on iteration 6: 0, 2090,
change from 2 to 3 on iteration 7: 0, 1045, 2090,
change from 3 to 2 on iteration 11: 0, 2090,
change from 2 to 3 on iteration 12: 0, 1045, 2090,
change from 3 to 2 on iteration 14: 0, 2090,
change from 2 to 3 on iteration 16: 0, 1045, 2090,
change from 3 to 2 on iteration 17: 0, 1045,
change from 2 to 3 on iteration 18: 0, 1045, 2090,
change from 3 to 1 on iteration 20: 0,
change from 1 to 3 on iteration 21: 0, 1045, 2090,
change from 3 to 2 on iteration 22: 0, 2090,
change from 2 to 3 on iteration 23: 0, 1045, 2090,
change from 3 to 2 on iteration 24: 0, 2090,
change from 2 to 3 on iteration 25: 0, 1045, 2090,
change from 3 to 2 on iteration 26: 0, 2090,
change from 2 to 3 on iteration 27: 0, 1045, 2090,
change from 3 to 2 on iteration 43: 0, 1045,
change from 2 to 3 on iteration 44: 0, 1045, 2090,
change from 3 to 2 on iteration 48: 0, 1045,
change from 2 to 3 on iteration 49: 0, 1045, 2090,
change from 3 to 2 on iteration 50: 0, 2090,
change from 2 to 3 on iteration 52: 0, 1045, 2090,
change from 3 to 2 on iteration 54: 0, 1045,
change from 2 to 3 on iteration 57: 0, 1045, 2090,
change from 3 to 2 on iteration 62: 0, 1045,
change from 2 to 3 on iteration 63: 0, 1045, 2090,
change from 3 to 2 on iteration 72: 0, 2090,
change from 2 to 3 on iteration 73: 0, 1045, 2090,
change from 3 to 2 on iteration 75: 0, 2090,
change from 2 to 3 on iteration 76: 0, 1045, 2090,
change from 3 to 2 on iteration 78: 0, 1045,
change from 2 to 3 on iteration 79: 0, 1045, 2090,
change from 3 to 2 on iteration 81: 0, 2090,
change from 2 to 3 on iteration 82: 0, 1045, 2090,
change from 3 to 2 on iteration 85: 0, 2090,
change from 2 to 3 on iteration 86: 0, 1045, 2090,
change from 3 to 2 on iteration 89: 0, 2090,
change from 2 to 3 on iteration 90: 0, 1045, 2090,
change from 3 to 2 on iteration 91: 0, 2090,
change from 2 to 1 on iteration 92: 0,
change from 1 to 3 on iteration 93: 0, 1045, 2090,
change from 3 to 1 on iteration 99: 0,
我不是故意选择IndexOfSequence,它恰好是我今天开始使用的那个。我注意到在一天结束时它似乎缺少数据中的模式,所以我今晚编写了自己的模式匹配器。它不是那么快。我要稍微调整一下,看看在发布之前我是否可以100%保持一致。
我只是想提醒大家,他们应该测试这样的事情,以确保在你相信他们的生产代码之前,他们会给出好的,可重复的结果。
答案 14 :(得分:1)
我尝试了各种解决方案并最终修改了SearchBytePattern。我测试了一个30k的序列,它很快:)
static public int SearchBytePattern(byte[] pattern, byte[] bytes)
{
int matches = 0;
for (int i = 0; i < bytes.Length; i++)
{
if (pattern[0] == bytes[i] && bytes.Length - i >= pattern.Length)
{
bool ismatch = true;
for (int j = 1; j < pattern.Length && ismatch == true; j++)
{
if (bytes[i + j] != pattern[j])
ismatch = false;
}
if (ismatch)
{
matches++;
i += pattern.Length - 1;
}
}
}
return matches;
}
让我知道你的想法。
答案 15 :(得分:1)
这是我提出的解决方案。我包含了我在实施过程中发现的注释。它可以匹配前向,后向和不同的(in / dec)重新安排量,例如方向;从大海捞针的任何偏移开始。
任何输入都很棒!
/// <summary>
/// Matches a byte array to another byte array
/// forwards or reverse
/// </summary>
/// <param name="a">byte array</param>
/// <param name="offset">start offset</param>
/// <param name="len">max length</param>
/// <param name="b">byte array</param>
/// <param name="direction">to move each iteration</param>
/// <returns>true if all bytes match, otherwise false</returns>
internal static bool Matches(ref byte[] a, int offset, int len, ref byte[] b, int direction = 1)
{
#region Only Matched from offset Within a and b, could not differ, e.g. if you wanted to mach in reverse for only part of a in some of b that would not work
//if (direction == 0) throw new ArgumentException("direction");
//for (; offset < len; offset += direction) if (a[offset] != b[offset]) return false;
//return true;
#endregion
//Will match if b contains len of a and return a a index of positive value
return IndexOfBytes(ref a, ref offset, len, ref b, len) != -1;
}
///Here is the Implementation code
/// <summary>
/// Swaps two integers without using a temporary variable
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
internal static void Swap(ref int a, ref int b)
{
a ^= b;
b ^= a;
a ^= b;
}
/// <summary>
/// Swaps two bytes without using a temporary variable
/// </summary>
/// <param name="a"></param>
/// <param name="b"></param>
internal static void Swap(ref byte a, ref byte b)
{
a ^= b;
b ^= a;
a ^= b;
}
/// <summary>
/// Can be used to find if a array starts, ends spot Matches or compltely contains a sub byte array
/// Set checkLength to the amount of bytes from the needle you want to match, start at 0 for forward searches start at hayStack.Lenght -1 for reverse matches
/// </summary>
/// <param name="a">Needle</param>
/// <param name="offset">Start in Haystack</param>
/// <param name="len">Length of required match</param>
/// <param name="b">Haystack</param>
/// <param name="direction">Which way to move the iterator</param>
/// <returns>Index if found, otherwise -1</returns>
internal static int IndexOfBytes(ref byte[] needle, ref int offset, int checkLength, ref byte[] haystack, int direction = 1)
{
//If the direction is == 0 we would spin forever making no progress
if (direction == 0) throw new ArgumentException("direction");
//Cache the length of the needle and the haystack, setup the endIndex for a reverse search
int needleLength = needle.Length, haystackLength = haystack.Length, endIndex = 0, workingOffset = offset;
//Allocate a value for the endIndex and workingOffset
//If we are going forward then the bound is the haystackLength
if (direction >= 1) endIndex = haystackLength;
#region [Optomization - Not Required]
//{
//I though this was required for partial matching but it seems it is not needed in this form
//workingOffset = needleLength - checkLength;
//}
#endregion
else Swap(ref workingOffset, ref endIndex);
#region [Optomization - Not Required]
//{
//Otherwise we are going in reverse and the endIndex is the needleLength - checkLength
//I though the length had to be adjusted but it seems it is not needed in this form
//endIndex = needleLength - checkLength;
//}
#endregion
#region [Optomized to above]
//Allocate a value for the endIndex
//endIndex = direction >= 1 ? haystackLength : needleLength - checkLength,
//Determine the workingOffset
//workingOffset = offset > needleLength ? offset : needleLength;
//If we are doing in reverse swap the two
//if (workingOffset > endIndex) Swap(ref workingOffset, ref endIndex);
//Else we are going in forward direction do the offset is adjusted by the length of the check
//else workingOffset -= checkLength;
//Start at the checkIndex (workingOffset) every search attempt
#endregion
//Save the checkIndex (used after the for loop is done with it to determine if the match was checkLength long)
int checkIndex = workingOffset;
#region [For Loop Version]
///Optomized with while (single op)
///for (int checkIndex = workingOffset; checkIndex < endIndex; offset += direction, checkIndex = workingOffset)
///{
///Start at the checkIndex
/// While the checkIndex < checkLength move forward
/// If NOT (the needle at the checkIndex matched the haystack at the offset + checkIndex) BREAK ELSE we have a match continue the search
/// for (; checkIndex < checkLength; ++checkIndex) if (needle[checkIndex] != haystack[offset + checkIndex]) break; else continue;
/// If the match was the length of the check
/// if (checkIndex == checkLength) return offset; //We are done matching
///}
#endregion
//While the checkIndex < endIndex
while (checkIndex < endIndex)
{
for (; checkIndex < checkLength; ++checkIndex) if (needle[checkIndex] != haystack[offset + checkIndex]) break; else continue;
//If the match was the length of the check
if (checkIndex == checkLength) return offset; //We are done matching
//Move the offset by the direction, reset the checkIndex to the workingOffset
offset += direction; checkIndex = workingOffset;
}
//We did not have a match with the given options
return -1;
}
答案 16 :(得分:1)
我会使用通过转换为字符串进行匹配的解决方案......
您应该编写一个实现Knuth-Morris-Pratt searching algorithm的简单函数。这将是您可以用来查找正确索引的最快的简单算法。(您可以使用Boyer-Moore,但需要更多设置。
优化算法后,您可以尝试寻找其他类型的优化。但你应该从基础开始。
例如,目前“最快”的是Jb Evian的Locate解决方案。
如果看一下核心
for (int i = 0; i < self.Length; i++) {
if (!IsMatch (self, i, candidate))
continue;
list.Add (i);
}
在子算法匹配之后,它将开始在i + 1处找到匹配,但您已经知道第一个可能的匹配将是i + candidate.Length。所以,如果你添加,
i += candidate.Length -2; // -2 instead of -1 because the i++ will add the last index
当您期望超集中出现大量子集时,它会快得多。 (Bruno Conde已经在他的解决方案中这样做了)
但这只是KNP算法的一半,你还应该在IsMatch方法中添加一个名为numberOfValidMatches的额外参数,这将是一个out参数。
这将解决以下问题:
int validMatches = 0;
if (!IsMatch (self, i, candidate, out validMatches))
{
i += validMatches - 1; // -1 because the i++ will do the last one
continue;
}
和
static bool IsMatch (byte [] array, int position, byte [] candidate, out int numberOfValidMatches)
{
numberOfValidMatches = 0;
if (candidate.Length > (array.Length - position))
return false;
for (i = 0; i < candidate.Length; i++)
{
if (array [position + i] != candidate [i])
return false;
numberOfValidMatches++;
}
return true;
}
进行一些重构,你可以使用numberOfValidMatches作为循环变量,并使用while重写Locate循环以避免-2和-1。但我只想说清楚如何添加KMP算法。
答案 17 :(得分:1)
您可以使用ORegex:
var oregex = new ORegex<byte>("{0}{1}{2}", x=> x==12, x=> x==3, x=> x==5);
var toSearch = new byte[]{1,1,12,3,5,1,12,3,5,5,5,5};
var found = oregex.Matches(toSearch);
将找到两场比赛:
i:2;l:3
i:6;l:3
复杂性:O(n * m)在最坏的情况下,在现实生活中由于内部状态机而为O(n)。在某些情况下,它比.NET Regex更快。它结构紧凑,速度快,特别适用于阵列模式匹配。
答案 18 :(得分:0)
我试图理解桑切斯的提议并加快搜索速度.Below代码的性能几乎相等。但代码更容易理解。
public int Search3(byte[] src, byte[] pattern)
{
int index = -1;
for (int i = 0; i < src.Length; i++)
{
if (src[i] != pattern[0])
{
continue;
}
else
{
bool isContinoue = true;
for (int j = 1; j < pattern.Length; j++)
{
if (src[++i] != pattern[j])
{
isContinoue = true;
break;
}
if(j == pattern.Length - 1)
{
isContinoue = false;
}
}
if ( ! isContinoue)
{
index = i-( pattern.Length-1) ;
break;
}
}
}
return index;
}
答案 19 :(得分:0)
这是我对这个主题的看法。我使用指针来确保在较大的数组上速度更快。此函数将返回序列的第一次出现(这是我自己需要的情况)。
我确信您可以对其进行一些修改,以返回所有出现的列表。
我所做的很简单。我遍历源数组(干草堆),直到找到模式的第一个字节(needle)。找到第一个字节后,我将继续分别检查下一个字节是否与模式的下一个字节匹配。如果没有,我将继续尝试从以前的索引(在干草堆中)中正常搜索,然后再尝试匹配针头。
所以这是代码:
public unsafe int IndexOfPattern(byte[] src, byte[] pattern)
{
fixed(byte *srcPtr = &src[0])
fixed (byte* patternPtr = &pattern[0])
{
for (int x = 0; x < src.Length; x++)
{
byte currentValue = *(srcPtr + x);
if (currentValue != *patternPtr) continue;
bool match = false;
for (int y = 0; y < pattern.Length; y++)
{
byte tempValue = *(srcPtr + x + y);
if (tempValue != *(patternPtr + y))
{
match = false;
break;
}
match = true;
}
if (match)
return x;
}
}
return -1;
}
下面的安全代码:
public int IndexOfPatternSafe(byte[] src, byte[] pattern)
{
for (int x = 0; x < src.Length; x++)
{
byte currentValue = src[x];
if (currentValue != pattern[0]) continue;
bool match = false;
for (int y = 0; y < pattern.Length; y++)
{
byte tempValue = src[x + y];
if (tempValue != pattern[y])
{
match = false;
break;
}
match = true;
}
if (match)
return x;
}
return -1;
}
答案 20 :(得分:0)
前几天我遇到了这个问题,请尝试以下操作:
public static long FindBinaryPattern(byte[] data, byte[] pattern)
{
using (MemoryStream stream = new MemoryStream(data))
{
return FindBinaryPattern(stream, pattern);
}
}
public static long FindBinaryPattern(string filename, byte[] pattern)
{
using (FileStream stream = new FileStream(filename, FileMode.Open))
{
return FindBinaryPattern(stream, pattern);
}
}
public static long FindBinaryPattern(Stream stream, byte[] pattern)
{
byte[] buffer = new byte[1024 * 1024];
int patternIndex = 0;
int read;
while ((read = stream.Read(buffer, 0, buffer.Length)) > 0)
{
for (int bufferIndex = 0; bufferIndex < read; ++bufferIndex)
{
if (buffer[bufferIndex] == pattern[patternIndex])
{
++patternIndex;
if (patternIndex == pattern.Length)
return stream.Position - (read - bufferIndex) - pattern.Length + 1;
}
else
{
patternIndex = 0;
}
}
}
return -1;
}
它什么都不做,不会变得简单。
答案 21 :(得分:0)
如果您使用的是.NET Core 2.1或更高版本(或.NET Standard 2.1或更高版本的平台),则可以将MemoryExtensions.IndexOf
扩展方法与new Span
type一起使用:
int matchIndex = toBeSearched.AsSpan().IndexOf(pattern);
要查找所有出现的事件,可以使用类似以下内容的
public static IEnumerable<int> IndexesOf(this byte[] haystack, byte[] needle,
int startIndex = 0, bool includeOverlapping = false)
{
int matchIndex = haystack.AsSpan(startIndex).IndexOf(needle);
while (matchIndex >= 0)
{
yield return startIndex + matchIndex;
startIndex += matchIndex + (includeOverlapping ? 1 : needle.Length);
matchIndex = haystack.AsSpan(startIndex).IndexOf(needle);
}
}
不幸的是,implementation in .NET Core 2.1 - 3.0使用迭代的“对第一字节进行优化的单字节搜索,然后检查余数”的方法,而不是fast string search algorithm,但是在将来的版本中可能会发生变化。
答案 22 :(得分:0)
另一个易于遵循的答案,对于O(n)类型来说非常有效 不使用不安全代码或复制部分源数组的操作。
一定要测试。关于这个主题的一些建议很容易受到影响。
static void Main(string[] args)
{
// 1 1 1 1 1 1 1 1 1 1 2 2 2
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
byte[] buffer = new byte[] { 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 5, 5, 0, 5, 5, 1, 2 };
byte[] beginPattern = new byte[] { 1, 0, 2 };
byte[] middlePattern = new byte[] { 8, 9, 10 };
byte[] endPattern = new byte[] { 9, 10, 11 };
byte[] wholePattern = new byte[] { 1, 0, 2, 3, 4, 5, 6, 7, 8, 9, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
byte[] noMatchPattern = new byte[] { 7, 7, 7 };
int beginIndex = ByteArrayPatternIndex(buffer, beginPattern);
int middleIndex = ByteArrayPatternIndex(buffer, middlePattern);
int endIndex = ByteArrayPatternIndex(buffer, endPattern);
int wholeIndex = ByteArrayPatternIndex(buffer, wholePattern);
int noMatchIndex = ByteArrayPatternIndex(buffer, noMatchPattern);
}
/// <summary>
/// Returns the index of the first occurrence of a byte array within another byte array
/// </summary>
/// <param name="buffer">The byte array to be searched</param>
/// <param name="pattern">The byte array that contains the pattern to be found</param>
/// <returns>If buffer contains pattern then the index of the first occurrence of pattern within buffer; otherwise, -1</returns>
public static int ByteArrayPatternIndex(byte[] buffer, byte[] pattern)
{
if (buffer != null && pattern != null && pattern.Length <= buffer.Length)
{
int resumeIndex;
for (int i = 0; i <= buffer.Length - pattern.Length; i++)
{
if (buffer[i] == pattern[0]) // Current byte equals first byte of pattern
{
resumeIndex = 0;
for (int x = 1; x < pattern.Length; x++)
{
if (buffer[i + x] == pattern[x])
{
if (x == pattern.Length - 1) // Matched the entire pattern
return i;
else if (resumeIndex == 0 && buffer[i + x] == pattern[0]) // The current byte equals the first byte of the pattern so start here on the next outer loop iteration
resumeIndex = i + x;
}
else
{
if (resumeIndex > 0)
i = resumeIndex - 1; // The outer loop iterator will increment so subtract one
else if (x > 1)
i += (x - 1); // Advance the outer loop variable since we already checked these bytes
break;
}
}
}
}
}
return -1;
}
/// <summary>
/// Returns the indexes of each occurrence of a byte array within another byte array
/// </summary>
/// <param name="buffer">The byte array to be searched</param>
/// <param name="pattern">The byte array that contains the pattern to be found</param>
/// <returns>If buffer contains pattern then the indexes of the occurrences of pattern within buffer; otherwise, null</returns>
/// <remarks>A single byte in the buffer array can only be part of one match. For example, if searching for 1,2,1 in 1,2,1,2,1 only zero would be returned.</remarks>
public static int[] ByteArrayPatternIndex(byte[] buffer, byte[] pattern)
{
if (buffer != null && pattern != null && pattern.Length <= buffer.Length)
{
List<int> indexes = new List<int>();
int resumeIndex;
for (int i = 0; i <= buffer.Length - pattern.Length; i++)
{
if (buffer[i] == pattern[0]) // Current byte equals first byte of pattern
{
resumeIndex = 0;
for (int x = 1; x < pattern.Length; x++)
{
if (buffer[i + x] == pattern[x])
{
if (x == pattern.Length - 1) // Matched the entire pattern
indexes.Add(i);
else if (resumeIndex == 0 && buffer[i + x] == pattern[0]) // The current byte equals the first byte of the pattern so start here on the next outer loop iteration
resumeIndex = i + x;
}
else
{
if (resumeIndex > 0)
i = resumeIndex - 1; // The outer loop iterator will increment so subtract one
else if (x > 1)
i += (x - 1); // Advance the outer loop variable since we already checked these bytes
break;
}
}
}
}
if (indexes.Count > 0)
return indexes.ToArray();
}
return null;
}
答案 23 :(得分:0)
这是我使用基本数据类型编写的简单代码: (它返回首次出现的指数)
private static int findMatch(byte[] data, byte[] pattern) {
if(pattern.length > data.length){
return -1;
}
for(int i = 0; i<data.length ;){
int j;
for(j=0;j<pattern.length;j++){
if(pattern[j]!=data[i])
break;
i++;
}
if(j==pattern.length){
System.out.println("Pattern found at : "+(i - pattern.length ));
return i - pattern.length ;
}
if(j!=0)continue;
i++;
}
return -1;
}
答案 24 :(得分:0)
我参加派对有点晚了 如何使用Boyer Moore算法但搜索字节而不是字符串。 c#代码如下。
EyeCode Inc.
class Program {
static void Main(string[] args) {
byte[] text = new byte[] {12,3,5,76,8,0,6,125,23,36,43,76,125,56,34,234,12,4,5,76,8,0,6,125,234,56,211,122,22,4,7,89,76,64,12,3,5,76,8,0,6,123};
byte[] pattern = new byte[] {12,3,5,76,8,0,6,125};
BoyerMoore tmpSearch = new BoyerMoore(pattern,text);
Console.WriteLine(tmpSearch.Match());
Console.ReadKey();
}
public class BoyerMoore {
private static int ALPHABET_SIZE = 256;
private byte[] text;
private byte[] pattern;
private int[] last;
private int[] match;
private int[] suffix;
public BoyerMoore(byte[] pattern, byte[] text) {
this.text = text;
this.pattern = pattern;
last = new int[ALPHABET_SIZE];
match = new int[pattern.Length];
suffix = new int[pattern.Length];
}
/**
* Searches the pattern in the text.
* returns the position of the first occurrence, if found and -1 otherwise.
*/
public int Match() {
// Preprocessing
ComputeLast();
ComputeMatch();
// Searching
int i = pattern.Length - 1;
int j = pattern.Length - 1;
while (i < text.Length) {
if (pattern[j] == text[i]) {
if (j == 0) {
return i;
}
j--;
i--;
}
else {
i += pattern.Length - j - 1 + Math.Max(j - last[text[i]], match[j]);
j = pattern.Length - 1;
}
}
return -1;
}
/**
* Computes the function last and stores its values in the array last.
* last(Char ch) = the index of the right-most occurrence of the character ch
* in the pattern;
* -1 if ch does not occur in the pattern.
*/
private void ComputeLast() {
for (int k = 0; k < last.Length; k++) {
last[k] = -1;
}
for (int j = pattern.Length-1; j >= 0; j--) {
if (last[pattern[j]] < 0) {
last[pattern[j]] = j;
}
}
}
/**
* Computes the function match and stores its values in the array match.
* match(j) = min{ s | 0 < s <= j && p[j-s]!=p[j]
* && p[j-s+1]..p[m-s-1] is suffix of p[j+1]..p[m-1] },
* if such s exists, else
* min{ s | j+1 <= s <= m
* && p[0]..p[m-s-1] is suffix of p[j+1]..p[m-1] },
* if such s exists,
* m, otherwise,
* where p is the pattern and m is its length.
*/
private void ComputeMatch() {
/* Phase 1 */
for (int j = 0; j < match.Length; j++) {
match[j] = match.Length;
} //O(m)
ComputeSuffix(); //O(m)
/* Phase 2 */
//Uses an auxiliary array, backwards version of the KMP failure function.
//suffix[i] = the smallest j > i s.t. p[j..m-1] is a prefix of p[i..m-1],
//if there is no such j, suffix[i] = m
//Compute the smallest shift s, such that 0 < s <= j and
//p[j-s]!=p[j] and p[j-s+1..m-s-1] is suffix of p[j+1..m-1] or j == m-1},
// if such s exists,
for (int i = 0; i < match.Length - 1; i++) {
int j = suffix[i + 1] - 1; // suffix[i+1] <= suffix[i] + 1
if (suffix[i] > j) { // therefore pattern[i] != pattern[j]
match[j] = j - i;
}
else {// j == suffix[i]
match[j] = Math.Min(j - i + match[i], match[j]);
}
}
/* Phase 3 */
//Uses the suffix array to compute each shift s such that
//p[0..m-s-1] is a suffix of p[j+1..m-1] with j < s < m
//and stores the minimum of this shift and the previously computed one.
if (suffix[0] < pattern.Length) {
for (int j = suffix[0] - 1; j >= 0; j--) {
if (suffix[0] < match[j]) { match[j] = suffix[0]; }
}
{
int j = suffix[0];
for (int k = suffix[j]; k < pattern.Length; k = suffix[k]) {
while (j < k) {
if (match[j] > k) {
match[j] = k;
}
j++;
}
}
}
}
}
/**
* Computes the values of suffix, which is an auxiliary array,
* backwards version of the KMP failure function.
*
* suffix[i] = the smallest j > i s.t. p[j..m-1] is a prefix of p[i..m-1],
* if there is no such j, suffix[i] = m, i.e.
* p[suffix[i]..m-1] is the longest prefix of p[i..m-1], if suffix[i] < m.
*/
private void ComputeSuffix() {
suffix[suffix.Length-1] = suffix.Length;
int j = suffix.Length - 1;
for (int i = suffix.Length - 2; i >= 0; i--) {
while (j < suffix.Length - 1 && !pattern[j].Equals(pattern[i])) {
j = suffix[j + 1] - 1;
}
if (pattern[j] == pattern[i]) {
j--;
}
suffix[i] = j + 1;
}
}
}
}
答案 25 :(得分:0)
这是我的(不是最高效的)解决方案。它依赖于bytes / latin-1转换是无损的事实,对于bytes / ASCII或bytes / UTF8转换,不为真。
它的优点是它可以工作(tm)任何字节值(一些其他解决方案错误地使用字节0x80-0xff)并且可以扩展为执行更高级的正则表达式 匹配。
using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;
class C {
public static void Main() {
byte[] data = {0, 100, 0, 255, 100, 0, 100, 0, 255};
byte[] pattern = {0, 255};
foreach (int i in FindAll(data, pattern)) {
Console.WriteLine(i);
}
}
public static IEnumerable<int> FindAll(
byte[] haystack,
byte[] needle
) {
// bytes <-> latin-1 conversion is lossless
Encoding latin1 = Encoding.GetEncoding("iso-8859-1");
string sHaystack = latin1.GetString(haystack);
string sNeedle = latin1.GetString(needle);
for (Match m = Regex.Match(sHaystack, Regex.Escape(sNeedle));
m.Success; m = m.NextMatch()) {
yield return m.Index;
}
}
}
答案 26 :(得分:-1)
您可以将字节数组放入String并通过IndexOf运行匹配。或者你至少可以在字符串匹配上重用existing algorithms。
[STAThread]
static void Main(string[] args)
{
byte[] pattern = new byte[] {12,3,5,76,8,0,6,125};
byte[] toBeSearched = new byte[] {23,36,43,76,125,56,34,234,12,3,5,76,8,0,6,125,234,56,211,122,22,4,7,89,76,64,12,3,5,76,8,0,6,125};
string needle, haystack;
unsafe
{
fixed(byte * p = pattern) {
needle = new string((SByte *) p, 0, pattern.Length);
} // fixed
fixed (byte * p2 = toBeSearched)
{
haystack = new string((SByte *) p2, 0, toBeSearched.Length);
} // fixed
int i = haystack.IndexOf(needle, 0);
System.Console.Out.WriteLine(i);
}
}
答案 27 :(得分:-3)
toBeSearched.Except(pattern)将返回你的差异 toBeSearched.Intersect(pattern)将产生一组交集 通常,您应该查看Linq扩展中的扩展方法