我有一个查询,它不运行大量数据(恕我直言)但需要花费几分钟(5-10)来执行,并在执行时最终填充/ tmp空间(最多需要20GB)。一旦完成,空间就会被释放。
查询如下:
SELECT c.name, count(b.id), c.parent_accounting_reference, o.contract, a.contact_person, a.address_email, a.address_phone, a.address_fax, concat(ifnull(concat(a.description, ', '),''), ifnull(concat(a.apt_unit, ', '),''), ifnull(concat(a.preamble, ', '),''), ifnull(addr_entered,'')) FROM
booking b
join visit v on (b.visit_id = v.id)
join super_booking s on (v.super_booking_id = s.id)
join customer c on (s.customer_id = c.id)
join address a on (a.customer_id = c.id)
join customer_number cn on (cn.customer_numbers_id = c.id)
join number n on (cn.number_id = n.id)
join customer_email ce on (ce.customer_emails_id = c.id)
join email e on (ce.email_id = e.id)
left join organization o on (o.accounting_reference = c.parent_accounting_reference)
left join address_type at on (a.type_id = at.id and at.name_key = 'billing')
where s.company_id = 1
and v.expected_start_date between '2015-01-01 00:00:00' and '2015-02-01 00:00:00'
group by s.customer_id
order by count(b.id) desc
同样的解释计划是:
+----+-------------+-------+--------+--------------------------------------------------------------+---------------------+---------+--------------------------------------+-------+----------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+--------------------------------------------------------------+---------------------+---------+--------------------------------------+-------+----------------------------------------------+
| 1 | SIMPLE | s | ref | PRIMARY,FKC4F8739580E01B03,FKC4F8739597AD73B1 | FKC4F8739580E01B03 | 9 | const | 74088 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | ce | ref | FK864C4FFBAF6458E3,customer_emails_id,customer_emails_id_2 | customer_emails_id | 9 | id_dev.s.customer_id | 1 | Using where |
| 1 | SIMPLE | cn | ref | FK530F62CA30E87991,customer_numbers_id,customer_numbers_id_2 | customer_numbers_id | 9 | id_dev.ce.customer_emails_id | 1 | Using where |
| 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 8 | id_dev.s.customer_id | 1 | |
| 1 | SIMPLE | e | eq_ref | PRIMARY | PRIMARY | 8 | id_dev.ce.email_id | 1 | Using index |
| 1 | SIMPLE | n | eq_ref | PRIMARY | PRIMARY | 8 | id_dev.cn.number_id | 1 | Using index |
| 1 | SIMPLE | v | ref | PRIMARY,FK6B04D4BEF4FD9A | FK6B04D4BEF4FD9A | 8 | id_dev.s.id | 1 | Using where |
| 1 | SIMPLE | b | ref | FK3DB0859E1684683 | FK3DB0859E1684683 | 8 | id_dev.v.id | 1 | Using index |
| 1 | SIMPLE | o | ref | org_acct_reference | org_acct_reference | 767 | id_dev.c.parent_accounting_reference | 1 | |
| 1 | SIMPLE | a | ref | FKADDRCUST,customer_address_idx | FKADDRCUST | 9 | id_dev.c.id | 256 | Using where |
| 1 | SIMPLE | at | eq_ref | PRIMARY | PRIMARY | 8 | id_dev.a.type_id | 1 | |
+----+-------------+-------+--------+--------------------------------------------------------------+---------------------+---------+--------------------------------------+-------+----------------------------------------------+
它似乎正在使用正确的索引等,所以我无法理解为什么大量使用/ tmp和长执行时间。
答案 0 :(得分:0)
您的查询使用临时表,您可以通过Using temporary;
结果中的EXPLAIN
注释查看该表。您的MySQL设置可能配置为使用/ tmp存储临时表。
如果您想进一步优化查询,您应该调查为什么需要临时表。最好的方法是逐步简化查询,直到找出导致它的原因。在这种情况下,可能只是需要处理的行数,所以如果你确实需要所有这些数据,你可能也需要临时表。但是不要放弃优化我的帐户;)
顺便说一句,在另一个注释中,您可能希望查看COALESCE以处理NULL值。
答案 1 :(得分:0)
您仍然坚持使用临时表,因为您正在进行聚合查询,然后通过聚合中的一个结果对其进行排序。您的优化目标应该是减少该临时表中的行数和/或列数。
在visit.expected_start_date
上添加索引。这可以帮助MySQL更快地满足您的查询,尤其是当您的visit
表中有许多行位于查询的日期范围之外时。
您似乎正在尝试查找特定日期范围内预订量最多的客户。
因此,让我们从子查询开始,总结数据库中最少量的资料。
SELECT count(*) booking_count, s.customer_id
FROM visit v
JOIN super_booking s ON v.super_booking_id = s.id
JOIN booking b ON v.id = b.visit_id
WHERE v.expected_start_date <= '2015-01-01 00:00:00'
AND v.expected_start_date > '2015-02-01 00:00:00'
AND s.company_id = 1
GROUP BY s.customer_id
这会返回有关日期范围和公司ID的预订计数和客户ID列表。这将是非常有效的,特别是如果你在expected_start_date
表中的visit
上放一个索引
然后,让我们将该子查询加入到提取所需信息的那个子查询中。
SELECT c.name, booking_count, c.parent_accounting_reference,
o.contract,
a.contact_person, a.address_email, a.address_phone, a.address_fax,
concat(ifnull(concat(a.description, ', '),''),
ifnull(concat(a.apt_unit, ', '),''),
ifnull(concat(a.preamble, ', '),''),
ifnull(addr_entered,''))
FROM (
SELECT count(*) booking_count, s.customer_id
FROM visit v
JOIN super_booking s ON v.super_booking_id = s.id
JOIN booking b ON v.id = b.visit_id
WHERE v.expected_start_date <= '2015-01-01 00:00:00'
AND v.expected_start_date > '2015-02-01 00:00:00'
AND s.company_id = 1
GROUP BY s.customer_id
) top
join customer c on top.customer_id = c.id
join address a on (a.customer_id = c.id)
join customer_number cn on (cn.customer_numbers_id = c.id)
join number n on (cn.number_id = n.id)
join customer_email ce on (ce.customer_emails_id = c.id)
join email e on (ce.email_id = e.id)
left join organization o on (o.accounting_reference = c.parent_accounting_reference)
left join address_type at on (a.type_id = at.id and at.name_key = 'billing')
order by booking_count DESC
通过减少您需要总结的数据大小,这应该可以加快您的工作速度。
注意:注意date BETWEEN this AND that
中的陷阱。你真的想要
date >= this
AND date < that
因为BETWEEN
表示
date >= this
AND date <= that