我是一名大学生。我正在为我的最后一年项目开发一个音乐识别系统。根据“基于二维色度的鲁棒音频指纹提取算法”研究论文,我的系统中应该包含以下功能。
捕获音频信号---->框架窗口(汉宁窗口)-----> FFT ----->
高通滤波器----->等.....
我能够为音频捕获功能编码,我也将FFT API应用于代码。但我对如何将hanning窗口函数应用于我的代码感到困惑。有人可以帮我做这个功能吗?告诉我在哪里需要添加此功能,以及如何将其添加到代码中。
这是我的音频捕获代码并应用FFT代码:
private class RecordAudio extends AsyncTask<Void, double[], Void> {
@Override
protected Void doInBackground(Void... params) {
started = true;
try {
DataOutputStream dos = new DataOutputStream(
new BufferedOutputStream(new FileOutputStream(
recordingFile)));
int bufferSize = AudioRecord.getMinBufferSize(frequency,
channelConfiguration, audioEncoding);
audioRecord = new AudioRecord(MediaRecorder.AudioSource.MIC,
frequency, channelConfiguration, audioEncoding,
bufferSize);
short[] buffer = new short[blockSize];
double[] toTransform = new double[blockSize];
long t = System.currentTimeMillis();
long end = t + 15000;
audioRecord.startRecording();
double[] w = new double[blockSize];
while (started && System.currentTimeMillis() < end) {
int bufferReadResult = audioRecord.read(buffer, 0,
blockSize);
for (int i = 0; i < blockSize && i < bufferReadResult; i++) {
toTransform[i] = (double) buffer[i] / 32768.0;
dos.writeShort(buffer[i]);
}
// new part
toTransform = hanning (toTransform);
transformer.ft(toTransform);
publishProgress(toTransform);
}
audioRecord.stop();
dos.close();
} catch (Throwable t) {
Log.e("AudioRecord", "Recording Failed");
}
return null;
}
这些链接提供了hanning窗口算法和代码片段:
我用以下代码将hanning函数应用于我的应用程序,它对我有用....
public double[] hanningWindow(double[] recordedData) {
// iterate until the last line of the data buffer
for (int n = 1; n < recordedData.length; n++) {
// reduce unnecessarily performed frequency part of each and every frequency
recordedData[n] *= 0.5 * (1 - Math.cos((2 * Math.PI * n)
/ (recordedData.length - 1)));
}
// return modified buffer to the FFT function
return recordedData;
}
答案 0 :(得分:1)
首先,我认为你应该考虑固定你的FFT长度。如果我正确理解您的代码,您现在使用某种最小缓冲区大小作为FFT长度。 FFT长度对计算的性能和分辨率有很大影响。
你到WindowFunction.java的链接可以生成一个数组,它应该与你的FFT长度相同(我认为你的情况下是blockSize)。然后,您应该将缓冲区的每个样本与从数组中具有相同id的WindowFunction返回的值相乘。
这应该在FFT之前完成。