我编写了一些代码,用于查找树枝状流网络中给定覆盖范围上游的所有路径。例如,如果我代表以下网络:
4 -- 5 -- 8
/
2 --- 6 - 9 -- 10
/ \
1 -- 11
\
3 ----7
作为一组父子对:
{(11, 9), (10, 9), (9, 6), (6, 2), (8, 5), (5, 4), (4, 2), (2, 1), (3, 1), (7, 3)}
它将返回节点上游的所有路径,例如:
get_paths(h, 1) # edited, had 11 instead of 1 in before
[[Reach(2), Reach(6), Reach(9), Reach(11)], [Reach(2), Reach(6), Reach(9), Reach(10)], [Reach(2), Reach(4), Reach(5), Reach(8)], [Reach(3), Reach(7)]]
代码包含在下面。
我的问题是:我将这个应用于一个非常大的(例如新英格兰)地区的每个范围,任何给定的范围可能有数百万条路径。可能没有办法避免这是一个非常长的操作,但有一种pythonic方式来执行此操作,以便每次运行都不会生成全新的路径吗?
例如,如果我运行get_paths(h,2)并找到2上游的所有路径,我以后可以运行get_paths(h,1)而不回溯2中的所有路径吗?
import collections
# Object representing a stream reach. Used to construct a hierarchy for accumulation function
class Reach(object):
def __init__(self):
self.name = None
self.ds = None
self.us = set()
def __repr__(self):
return "Reach({})".format(self.name)
def build_hierarchy(flows):
hierarchy = collections.defaultdict(lambda: Reach())
for reach_id, parent in flows:
if reach_id:
hierarchy[reach_id].name = reach_id
hierarchy[parent].name = parent
hierarchy[reach_id].ds = hierarchy[parent]
hierarchy[parent].us.add(hierarchy[reach_id])
return hierarchy
def get_paths(h, start_node):
def go_up(n):
if not h[n].us:
paths.append(current_path[:])
for us in h[n].us:
current_path.append(us)
go_up(us.name)
if current_path:
current_path.pop()
paths = []
current_path = []
go_up(start_node)
return paths
test_tree = {(11, 9), (10, 9), (9, 6), (6, 2), (8, 5), (5, 4), (4, 2), (2, 1), (3, 1), (7, 3)}
h = build_hierarchy(test_tree)
p = get_paths(h, 1)
编辑: 几个星期前,我问了一个关于找到" ALL"上游到达网络并获得了非常快的优秀答案:
class Node(object):
def __init__(self):
self.name = None
self.parent = None
self.children = set()
self._upstream = set()
def __repr__(self):
return "Node({})".format(self.name)
@property
def upstream(self):
if self._upstream:
return self._upstream
else:
for child in self.children:
self._upstream.add(child)
self._upstream |= child.upstream
return self._upstream
import collections
edges = {(11, 9), (10, 9), (9, 6), (6, 2), (8, 5), (5, 4), (4, 2), (2, 1), (3, 1), (7, 3)}
nodes = collections.defaultdict(lambda: Node())
for node, parent in edges:
nodes[node].name = node
nodes[parent].name = parent
nodes[node].parent = nodes[parent]
nodes[parent].children.add(nodes[node])
我注意到此代码的 def upstream(): 部分按顺序添加了上游节点,但由于它是一个迭代函数,我可以&# 39;找到一种将它们附加到单个列表的好方法。也许有一种方法可以修改保留订单的代码。
答案 0 :(得分:3)
是的,你可以这样做。我不完全确定你的约束是什么;但是,这应该让你走上正轨。最糟糕的情况是运行时间为O(| E | + | V |),唯一的区别在于p.dfsh
,我们正在缓存先前评估的路径,而不是p.dfs
,我们是不
这将增加额外的空间开销,因此请注意这种权衡 - 您将节省许多迭代(取决于您的数据集),无论如何都会占用更多的内存。不幸的是,缓存并没有改善增长的顺序,只有实际的运行时间:
points = set([
(11, 9),
(10, 9),
(9, 6),
(6, 2),
(8, 5),
(5, 4),
(4, 2),
(2, 1),
(3, 1),
(7, 3),
])
class PathFinder(object):
def __init__(self, points):
self.graph = self._make_graph(points)
self.hierarchy = {}
def _make_graph(self, points):
graph = {}
for p in points:
p0, p1 = p[0], p[1]
less, more = min(p), max(p)
if less not in graph:
graph[less] = set([more])
else:
graph[less].add(more)
return graph
def dfs(self, start):
visited = set()
stack = [start]
_count = 0
while stack:
_count += 1
vertex = stack.pop()
if vertex not in visited:
visited.add(vertex)
if vertex in self.graph:
stack.extend(v for v in self.graph[vertex])
print "Start: {s} | Count: {c} |".format(c=_count, s=start),
return visited
def dfsh(self, start):
visited = set()
stack = [start]
_count = 0
while stack:
_count += 1
vertex = stack.pop()
if vertex not in visited:
if vertex in self.hierarchy:
visited.update(self.hierarchy[vertex])
else:
visited.add(vertex)
if vertex in self.graph:
stack.extend([v for v in self.graph[vertex]])
self.hierarchy[start] = visited
print "Start: {s} | Count: {c} |".format(c=_count, s=start),
return visited
p = PathFinder(points)
print p.dfsh(1)
print p.dfsh(2)
print p.dfsh(9)
print p.dfsh(6)
print p.dfsh(2)
print
print p.dfs(1)
print p.dfs(2)
print p.dfs(9)
print p.dfs(6)
print p.dfs(2)
p.dfsh
的输出如下:
Start: 1 | Count: 11 | set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
Start: 2 | Count: 8 | set([2, 4, 5, 6, 8, 9, 10, 11])
Start: 9 | Count: 3 | set([9, 10, 11])
Start: 6 | Count: 2 | set([9, 10, 11, 6])
Start: 2 | Count: 1 | set([2, 4, 5, 6, 8, 9, 10, 11])
常规p.dfs
的输出是:
Start: 1 | Count: 11 | set([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
Start: 2 | Count: 8 | set([2, 4, 5, 6, 8, 9, 10, 11])
Start: 9 | Count: 3 | set([9, 10, 11])
Start: 6 | Count: 4 | set([9, 10, 11, 6])
Start: 2 | Count: 8 | set([2, 4, 5, 6, 8, 9, 10, 11])
正如你所看到的,我做了一个DFS,但我在合理的范围内跟踪以前的迭代。我不想跟踪所有可能的先前路径,因为如果你在大型数据集上使用它,它将占用大量的内存。
在输出中,您可以看到p.dfsh(2)
的迭代计数从8变为1.同样,由于{{1}的先前计算,p.dfsh(6)
的计数也被降为2 }。这是标准DFS的适度运行时改进,特别是对于非常大的数据集。
答案 1 :(得分:1)
当然,假设您有足够的内存来存储每个节点的所有路径,您可以直接修改您在该答案中收到的代码:
class Reach(object):
def __init__(self):
self.name = None
self.ds = None
self.us = set()
self._paths = []
def __repr__(self):
return "Reach({})".format(self.name)
@property
def paths(self):
if not self._paths:
for child in self.us:
if child.paths:
self._paths.extend([child] + path for path in child.paths)
else:
self._paths.append([child])
return self._paths
请注意,对于大约20,000次到达,该方法所需的内存将为千兆字节。假设通常是平衡的到达树,所需的内存是 O(n ^ 2),其中 n 是到达的总数。根据您的系统,这将是20,000到达的4-8 GiB。在计算了h[1]
的路径之后,对于任何节点,所需时间 O(1)。