我在Swift中遇到了线程问题。我有一个包含一些对象的数组。在委托上,类每秒都会获得新对象。之后我必须检查对象是否已经在数组中,所以我必须更新对象,否则我必须删除/添加新对象。
如果我添加一个新对象,我必须首先通过网络获取一些数据。这是handelt经过一个街区。
现在我的问题是,如何同步这项任务?
我尝试了一个dispatch_semaphore,但是这个阻止了UI,直到块完成。
我还尝试了一个简单的bool变量,它检查当前是否执行了块并同时跳过了compare方法。
但这两种方法都不理想。
管理阵列的最佳方法是什么,我不想在阵列中有重复的数据。
答案 0 :(得分:63)
Kirsteins是正确的,但您并不总是需要使用调度队列。您可以使用:
objc_sync_enter(array)
// manipulate the array
objc_sync_exit(array)
这应该是诀窍。为了获得额外的好处,您可以创建一个在需要线程安全时使用的函数:
func sync(lock: NSObject, closure: () -> Void) {
objc_sync_enter(lock)
closure()
objc_sync_exit(lock)
}
...
var list = NSMutableArray()
sync (list) {
list.addObject("something")
}
请注意,我已将AnyObject
更改为NSObject
。在Swift集合中,类型实现为struct
,它们是按值传递,因此我猜测使用 mutable <会更安全/ strong>使用方便的sync
函数时通过引用传递的集合类。
更新Swift
线程安全访问的推荐模式是使用dispatch barrier
:
let queue = DispatchQueue(label: "thread-safe-obj", attributes: .concurrent)
// write
queue.async(flags: .barrier) {
// perform writes on data
}
// read
var value: ValueType!
queue.sync {
// perform read and assign value
}
return value
答案 1 :(得分:30)
我解决这个问题的方法是使用串行调度队列来同步对盒装数组的访问。当你试图获取索引值并且队列真的很忙时它会阻塞线程,但这也是锁的问题。
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = dispatch_queue_create("SynchronizedArrayAccess", DISPATCH_QUEUE_SERIAL)
public func append(newElement: T) {
dispatch_async(self.accessQueue) {
self.array.append(newElement)
}
}
public subscript(index: Int) -> T {
set {
dispatch_async(self.accessQueue) {
self.array[index] = newValue
}
}
get {
var element: T!
dispatch_sync(self.accessQueue) {
element = self.array[index]
}
return element
}
}
}
var a = SynchronizedArray<Int>()
a.append(1)
a.append(2)
a.append(3)
// can be empty as this is non-thread safe access
println(a.array)
// thread-safe synchonized access
println(a[0])
println(a[1])
println(a[2])
答案 2 :(得分:29)
Kirsteins的答案是正确的,但为了方便起见,我已经用Amol Chaudhari和Rob的建议更新了答案,建议使用带有异步屏障的并发队列来允许并发读取但阻止写入。
我还包装了一些对我有用的其他数组函数。
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = dispatch_queue_create("SynchronizedArrayAccess", DISPATCH_QUEUE_CONCURRENT)
public func append(newElement: T) {
dispatch_barrier_async(self.accessQueue) {
self.array.append(newElement)
}
}
public func removeAtIndex(index: Int) {
dispatch_barrier_async(self.accessQueue) {
self.array.removeAtIndex(index)
}
}
public var count: Int {
var count = 0
dispatch_sync(self.accessQueue) {
count = self.array.count
}
return count
}
public func first() -> T? {
var element: T?
dispatch_sync(self.accessQueue) {
if !self.array.isEmpty {
element = self.array[0]
}
}
return element
}
public subscript(index: Int) -> T {
set {
dispatch_barrier_async(self.accessQueue) {
self.array[index] = newValue
}
}
get {
var element: T!
dispatch_sync(self.accessQueue) {
element = self.array[index]
}
return element
}
}
}
<强>更新强> 这是为Swift3更新的相同代码。
public class SynchronizedArray<T> {
private var array: [T] = []
private let accessQueue = DispatchQueue(label: "SynchronizedArrayAccess", attributes: .concurrent)
public func append(newElement: T) {
self.accessQueue.async(flags:.barrier) {
self.array.append(newElement)
}
}
public func removeAtIndex(index: Int) {
self.accessQueue.async(flags:.barrier) {
self.array.remove(at: index)
}
}
public var count: Int {
var count = 0
self.accessQueue.sync {
count = self.array.count
}
return count
}
public func first() -> T? {
var element: T?
self.accessQueue.sync {
if !self.array.isEmpty {
element = self.array[0]
}
}
return element
}
public subscript(index: Int) -> T {
set {
self.accessQueue.async(flags:.barrier) {
self.array[index] = newValue
}
}
get {
var element: T!
self.accessQueue.sync {
element = self.array[index]
}
return element
}
}
}
答案 3 :(得分:7)
一个小细节:在Swift 3中(至少在Xcode 8 Beta 6中),队列的语法发生了显着变化。 @ Kirsteins&#39;的重要变化答案是:
private let accessQueue = DispatchQueue(label: "SynchronizedArrayAccess")
txAccessQueue.async() {
// Your async code goes here...
}
txAccessQueue.sync() {
// Your sync code goes here...
}
答案 4 :(得分:4)
我不知道为什么人们对如此简单的事情采取如此复杂的方法
请勿滥用DispatchQueues
进行锁定。使用queue.sync
只不过是在等待锁(DispatchGroup
)时获取锁并将工作分派到另一个线程。这不仅是不必要的,而且还会因您锁定的内容而产生副作用。您可以在GCD Source
不要使用objc_sync_enter/exit
,它们由ObjC @synchronized
使用,它将隐式地将Swift集合桥接到ObjC副本,这也是不必要的。这是旧版API。
只需定义一个锁,并保护您的集合访问权限即可。
var lock = NSLock()
var a = [1, 2, 3]
lock.lock()
a.append(4)
lock.unlock()
如果想让生活更轻松一点,请为需要锁定的方法定义一个小的扩展名。
extension Array {
mutating func append(_ newElement: Element, _ lock: inout NSLock) {
lock.lock()
defer { lock.unlock() }
append(newElement)
}
}
var lock = NSLock()
var a = [1, 2, 3]
a.append(4, &lock)
不需要上下文切换,它比将所有内容包装在sync
块中更简单。或使用锁扩展名获得更大的灵活性
extension NSLock {
@discardableResult
func with<T>(_ block: () throws -> T) rethrows -> T {
lock()
defer { unlock() }
return try block()
}
}
let lock = NSLock()
var a = [1, 2, 3]
lock.with { a.append(4) }
您还可以定义@propertyWrapper
以使您的成员var
成为原子。
@propertyWrapper
struct AtomicValue<Value> {
private let lock: NSLock
private var value: Value
init(default: Value) {
self.lock = NSLock()
self.value = `default`
}
var wrappedValue: Value {
get {
lock.lock()
defer { lock.unlock() }
return value
}
set {
lock.lock()
value = newValue
lock.unlock()
}
}
}
答案 5 :(得分:3)
import Foundation
// https://developer.apple.com/documentation/swift/rangereplaceablecollection
struct AtomicArray<T>: RangeReplaceableCollection {
typealias Element = T
typealias Index = Int
typealias SubSequence = AtomicArray<T>
typealias Indices = Range<Int>
fileprivate var array: Array<T>
var startIndex: Int { return array.startIndex }
var endIndex: Int { return array.endIndex }
var indices: Range<Int> { return array.indices }
func index(after i: Int) -> Int { return array.index(after: i) }
private var semaphore = DispatchSemaphore(value: 1)
fileprivate func _wait() { semaphore.wait() }
fileprivate func _signal() { semaphore.signal() }
}
// Instance Methods
extension AtomicArray {
init<S>(_ elements: S) where S : Sequence, AtomicArray.Element == S.Element {
array = Array<S.Element>(elements)
}
init() { self.init([]) }
init(repeating repeatedValue: AtomicArray.Element, count: Int) {
let array = Array(repeating: repeatedValue, count: count)
self.init(array)
}
}
// Instance Methods
extension AtomicArray {
public mutating func append(_ newElement: AtomicArray.Element) {
_wait(); defer { _signal() }
array.append(newElement)
}
public mutating func append<S>(contentsOf newElements: S) where S : Sequence, AtomicArray.Element == S.Element {
_wait(); defer { _signal() }
array.append(contentsOf: newElements)
}
func filter(_ isIncluded: (AtomicArray.Element) throws -> Bool) rethrows -> AtomicArray {
_wait(); defer { _signal() }
let subArray = try array.filter(isIncluded)
return AtomicArray(subArray)
}
public mutating func insert(_ newElement: AtomicArray.Element, at i: AtomicArray.Index) {
_wait(); defer { _signal() }
array.insert(newElement, at: i)
}
mutating func insert<S>(contentsOf newElements: S, at i: AtomicArray.Index) where S : Collection, AtomicArray.Element == S.Element {
_wait(); defer { _signal() }
array.insert(contentsOf: newElements, at: i)
}
mutating func popLast() -> AtomicArray.Element? {
_wait(); defer { _signal() }
return array.popLast()
}
@discardableResult mutating func remove(at i: AtomicArray.Index) -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.remove(at: i)
}
mutating func removeAll(keepingCapacity keepCapacity: Bool) {
_wait(); defer { _signal() }
array.removeAll()
}
mutating func removeAll(where shouldBeRemoved: (AtomicArray.Element) throws -> Bool) rethrows {
_wait(); defer { _signal() }
try array.removeAll(where: shouldBeRemoved)
}
@discardableResult mutating func removeFirst() -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.removeFirst()
}
mutating func removeFirst(_ k: Int) {
_wait(); defer { _signal() }
array.removeFirst(k)
}
@discardableResult mutating func removeLast() -> AtomicArray.Element {
_wait(); defer { _signal() }
return array.removeLast()
}
mutating func removeLast(_ k: Int) {
_wait(); defer { _signal() }
array.removeLast(k)
}
mutating func removeFirstIfExist(where shouldBeRemoved: (AtomicArray.Element) throws -> Bool) {
_wait(); defer { _signal() }
guard let index = try? array.firstIndex(where: shouldBeRemoved) else { return }
array.remove(at: index)
}
mutating func removeSubrange(_ bounds: Range<Int>) {
_wait(); defer { _signal() }
array.removeSubrange(bounds)
}
mutating func replaceSubrange<C, R>(_ subrange: R, with newElements: C) where C : Collection, R : RangeExpression, T == C.Element, AtomicArray<Element>.Index == R.Bound {
_wait(); defer { _signal() }
array.replaceSubrange(subrange, with: newElements)
}
mutating func reserveCapacity(_ n: Int) {
_wait(); defer { _signal() }
array.reserveCapacity(n)
}
public var count: Int {
_wait(); defer { _signal() }
return array.count
}
public var isEmpty: Bool {
_wait(); defer { _signal() }
return array.isEmpty
}
}
// Get/Set
extension AtomicArray {
// Single action
func get() -> [T] {
_wait(); defer { _signal() }
return array
}
mutating func set(array: [T]) {
_wait(); defer { _signal() }
self.array = array
}
// Multy actions
mutating func get(closure: ([T])->()) {
_wait(); defer { _signal() }
closure(array)
}
mutating func set(closure: ([T]) -> ([T])) {
_wait(); defer { _signal() }
array = closure(array)
}
}
// Subscripts
extension AtomicArray {
subscript(bounds: Range<AtomicArray.Index>) -> AtomicArray.SubSequence {
get {
_wait(); defer { _signal() }
return AtomicArray(array[bounds])
}
}
subscript(bounds: AtomicArray.Index) -> AtomicArray.Element {
get {
_wait(); defer { _signal() }
return array[bounds]
}
set(value) {
_wait(); defer { _signal() }
array[bounds] = value
}
}
}
// Operator Functions
extension AtomicArray {
static func + <Other>(lhs: Other, rhs: AtomicArray) -> AtomicArray where Other : Sequence, AtomicArray.Element == Other.Element {
return AtomicArray(lhs + rhs.get())
}
static func + <Other>(lhs: AtomicArray, rhs: Other) -> AtomicArray where Other : Sequence, AtomicArray.Element == Other.Element {
return AtomicArray(lhs.get() + rhs)
}
static func + <Other>(lhs: AtomicArray, rhs: Other) -> AtomicArray where Other : RangeReplaceableCollection, AtomicArray.Element == Other.Element {
return AtomicArray(lhs.get() + rhs)
}
static func + (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> AtomicArray {
return AtomicArray(lhs.get() + rhs.get())
}
static func += <Other>(lhs: inout AtomicArray, rhs: Other) where Other : Sequence, AtomicArray.Element == Other.Element {
lhs._wait(); defer { lhs._signal() }
lhs.array += rhs
}
}
extension AtomicArray: CustomStringConvertible {
var description: String {
_wait(); defer { _signal() }
return "\(array)"
}
}
extension AtomicArray where Element : Equatable {
func split(separator: Element, maxSplits: Int, omittingEmptySubsequences: Bool) -> [ArraySlice<Element>] {
_wait(); defer { _signal() }
return array.split(separator: separator, maxSplits: maxSplits, omittingEmptySubsequences: omittingEmptySubsequences)
}
func firstIndex(of element: Element) -> Int? {
_wait(); defer { _signal() }
return array.firstIndex(of: element)
}
func lastIndex(of element: Element) -> Int? {
_wait(); defer { _signal() }
return array.lastIndex(of: element)
}
func starts<PossiblePrefix>(with possiblePrefix: PossiblePrefix) -> Bool where PossiblePrefix : Sequence, Element == PossiblePrefix.Element {
_wait(); defer { _signal() }
return array.starts(with: possiblePrefix)
}
func elementsEqual<OtherSequence>(_ other: OtherSequence) -> Bool where OtherSequence : Sequence, Element == OtherSequence.Element {
_wait(); defer { _signal() }
return array.elementsEqual(other)
}
func contains(_ element: Element) -> Bool {
_wait(); defer { _signal() }
return array.contains(element)
}
static func != (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> Bool {
lhs._wait(); defer { lhs._signal() }
rhs._wait(); defer { rhs._signal() }
return lhs.array != rhs.array
}
static func == (lhs: AtomicArray<Element>, rhs: AtomicArray<Element>) -> Bool {
lhs._wait(); defer { lhs._signal() }
rhs._wait(); defer { rhs._signal() }
return lhs.array == rhs.array
}
}
import Foundation
// init
var array = AtomicArray<Int>()
print(array)
array = AtomicArray(repeating: 0, count: 5)
print(array)
array = AtomicArray([1,2,3,4,5,6,7,8,9])
print(array)
// add
array.append(0)
print(array)
array.append(contentsOf: [5,5,5])
print(array)
// filter
array = array.filter { $0 < 7 }
print(array)
// map
let strings = array.map { "\($0)" }
print(strings)
// insert
array.insert(99, at: 5)
print(array)
array.insert(contentsOf: [2, 2, 2], at: 0)
print(array)
// pop
_ = array.popLast()
print(array)
_ = array.popFirst()
print(array)
// remove
array.removeFirst()
print(array)
array.removeFirst(3)
print(array)
array.remove(at: 2)
print(array)
array.removeLast()
print(array)
array.removeLast(5)
print(array)
array.removeAll { $0%2 == 0 }
print(array)
array = AtomicArray([1,2,3,4,5,6,7,8,9,0])
array.removeSubrange(0...2)
print(array)
array.replaceSubrange(0...2, with: [0,0,0])
print(array)
array.removeAll()
print(array)
array.set(array: [1,2,3,4,5,6,7,8,9,0])
print(array)
// subscript
print(array[0])
array[0] = 100
print(array)
print(array[1...4])
// operator functions
array = [1,2,3] + AtomicArray([4,5,6])
print(array)
array = AtomicArray([4,5,6]) + [1,2,3]
print(array)
array = AtomicArray([1,2,3]) + AtomicArray([4,5,6])
print(array)
import Foundation
var arr = AtomicArray([0,1,2,3,4,5])
for i in 0...1000 {
// Single actions
DispatchQueue.global(qos: .background).async {
usleep(useconds_t(Int.random(in: 100...10000)))
let num = i*i
arr.append(num)
print("arr.append(\(num)), background queue")
}
DispatchQueue.global(qos: .default).async {
usleep(useconds_t(Int.random(in: 100...10000)))
arr.append(arr.count)
print("arr.append(\(arr.count)), default queue")
}
// multy actions
DispatchQueue.global(qos: .utility).async {
arr.set { array -> [Int] in
var newArray = array
newArray.sort()
print("sort(), .utility queue")
return newArray
}
}
}
答案 6 :(得分:3)
这是Swift 4的答案
let queue = DispatchQueue(label: "com.readerWriter", qos: .background, attributes: .concurrent)
var safeArray: [String] = []
subscript(index: Int) -> String {
get {
queue.sync {
return safeArray[index]
}
}
set(newValue) {
queue.async(flags: .barrier) { [weak self] in
self?.safeArray[index] = newValue
}
}
}
答案 7 :(得分:2)
对于那些使用Swift-Nio(或基于Swift-Nio的Vapor Swift)的人,有一个针对此问题的内置解决方案:
class MyClass {
let lock = Lock()
var myArray: Array<Int> = []
func networkRequestWhatEver() {
lock.withLock {
array.append(someValue)
}
}
}
请注意,在修改相同的Lock
对象(或Array
等)时,应使用相同的Dictionary
对象。
答案 8 :(得分:1)
我认为dispatch_barriers值得研究。使用gcd进行同步比使用synchronize关键字更加直观,以避免来自多个线程的状态变异。
https://mikeash.com/pyblog/friday-qa-2011-10-14-whats-new-in-gcd.html
答案 9 :(得分:1)
这里有一个很好的答案,它是线程安全的,不会阻止并发读取:https://stackoverflow.com/a/15936959/2050665
它是用Objective C编写的,但移植到Swift是微不足道的。
@property (nonatomic, readwrite, strong) dispatch_queue_t thingQueue;
@property (nonatomic, strong) NSObject *thing;
- (id)init {
...
_thingQueue = dispatch_queue_create("...", DISPATCH_QUEUE_CONCURRENT);
...
}
- (NSObject *)thing {
__block NSObject *thing;
dispatch_sync(self.thingQueue, ^{
thing = _thing;
});
return thing;
}
- (void)setThing:(NSObject *)thing {
dispatch_barrier_async(self.thingQueue, ^{
_thing = thing;
});
}
答案 10 :(得分:1)
使用DispatchQueue
同步
http://basememara.com/creating-thread-safe-arrays-in-swift/
以下是线程安全数组的粗略实现,您可以对其进行微调。
public class ThreadSafeArray<Element> {
private var elements : [Element]
private let syncQueue = DispatchQueue(label: "Sync Queue",
qos: .default,
attributes: .concurrent,
autoreleaseFrequency: .inherit,
target: nil)
public init() {
elements = []
}
public init(_ newElements: [Element]) {
elements = newElements
}
//MARK: Non-mutating
public var first : Element? {
return syncQueue.sync {
elements.first
}
}
public var last : Element? {
return syncQueue.sync {
elements.last
}
}
public var count : Int {
return syncQueue.sync {
elements.count
}
}
public subscript(index: Int) -> Element {
get {
return syncQueue.sync {
elements[index]
}
}
set {
syncQueue.sync(flags: .barrier) {
elements[index] = newValue
}
}
}
public func reversed() -> [Element] {
return syncQueue.sync {
elements.reversed()
}
}
public func flatMap<T>(_ transform: (Element) throws -> T?) rethrows -> [T] {
return try syncQueue.sync {
try elements.flatMap(transform)
}
}
public func filter(_ isIncluded: (Element) -> Bool) -> [Element] {
return syncQueue.sync {
elements.filter(isIncluded)
}
}
//MARK: Mutating
public func append(_ element: Element) {
syncQueue.sync(flags: .barrier) {
elements.append(element)
}
}
public func append<S>(contentsOf newElements: S) where Element == S.Element, S : Sequence {
syncQueue.sync(flags: .barrier) {
elements.append(contentsOf: newElements)
}
}
public func remove(at index: Int) -> Element? {
var element : Element?
syncQueue.sync(flags: .barrier) {
if elements.startIndex ..< elements.endIndex ~= index {
element = elements.remove(at: index)
}
else {
element = nil
}
}
return element
}
}
extension ThreadSafeArray where Element : Equatable {
public func index(of element: Element) -> Int? {
return syncQueue.sync {
elements.index(of: element)
}
}
}
答案 11 :(得分:1)
首先,objc_sync_enter不起作用
objc_sync_enter(array)
defer {
objc_sync_exit(array)
}
原因objc_sync_enter / objc_sync_exit not working with DISPATCH_QUEUE_PRIORITY_LOW
objc_sync_enter是一个极低级的原语,并不打算直接使用。它是ObjC中旧的@synchronized系统的实现细节。
对于swift,应该像这样使用,正如@Kirsteins所说,我建议同步而不是异步:
private let syncQueue = DispatchQueue(label:"com.test.LockQueue")
func test(){
self.syncQueue.sync{
// thread safe code here
}
}
答案 12 :(得分:0)
To improve the accepted answer我建议使用延迟:
objc_sync_enter(array)
defer {
objc_sync_exit(array)
}
// manipulate the array
和第二个
func sync(lock: NSObject, closure: () -> Void) {
objc_sync_enter(lock)
defer {
objc_sync_exit(lock)
}
closure()
}