使用交叉验证和F1分数选择SVM参数

时间:2015-01-27 10:00:29

标签: matlab machine-learning classification svm cross-validation

我需要跟踪F1分数,同时调整C& SVM中的Sigma, 例如,以下代码记录准确性,我需要将其更改为F1-Score但我无法做到......

%# read some training data
[labels,data] = libsvmread('./heart_scale');

%# grid of parameters
folds = 5;
[C,gamma] = meshgrid(-5:2:15, -15:2:3);

%# grid search, and cross-validation
cv_acc = zeros(numel(C),1);
    for i=1:numel(C)
cv_acc(i) = svmtrain(labels, data, ...
                sprintf('-c %f -g %f -v %d', 2^C(i), 2^gamma(i), folds));
end

%# pair (C,gamma) with best accuracy
[~,idx] = max(cv_acc);

%# now you can train you model using best_C and best_gamma
best_C = 2^C(idx);
best_gamma = 2^gamma(idx);
%# ...

我看过以下两个链接

Retraining after Cross Validation with libsvm

10 fold cross-validation in one-against-all SVM (using LibSVM)

我明白我必须首先在训练数据上找到最佳的C和gamma / sigma参数,然后使用这两个值进行LEAVE-ONE-OUT交叉验证分类实验, 所以我现在想要的是首先进行网格搜索以调整C&西格玛。 请我更喜欢使用MATLAB-SVM而不是LIBSVM。 以下是我的LEAVE-ONE-OUT交叉验证分类代码。

... clc
 clear all
close all
a = load('V1.csv');
X = double(a(:,1:12));
Y = double(a(:,13));
% train data
datall=[X,Y];
A=datall;
n = 40;
ordering = randperm(n);
B = A(ordering, :);  
good=B; 
input=good(:,1:12);
target=good(:,13);
CVO = cvpartition(target,'leaveout',1);  
cp = classperf(target);                      %# init performance tracker
svmModel=[];
for i = 1:CVO.NumTestSets                                %# for each fold
trIdx = CVO.training(i);              
teIdx = CVO.test(i);                   
%# train an SVM model over training instances

svmModel = svmtrain(input(trIdx,:), target(trIdx), ...
       'Autoscale',true, 'Showplot',false, 'Method','ls', ...
      'BoxConstraint',0.1, 'Kernel_Function','rbf', 'RBF_Sigma',0.1);
%# test using test instances
pred = svmclassify(svmModel, input(teIdx,:), 'Showplot',false);
%# evaluate and update performance object
cp = classperf(cp, pred, teIdx); 
end
%# get accuracy
accuracy=cp.CorrectRate*100
sensitivity=cp.Sensitivity*100
specificity=cp.Specificity*100
PPV=cp.PositivePredictiveValue*100
NPV=cp.NegativePredictiveValue*100
%# get confusion matrix
%# columns:actual, rows:predicted, last-row: unclassified instances
cp.CountingMatrix
recallP = sensitivity;
recallN = specificity;
precisionP = PPV;
precisionN = NPV;
f1P = 2*((precisionP*recallP)/(precisionP + recallP));
f1N = 2*((precisionN*recallN)/(precisionN + recallN));
aF1 = ((f1P+f1N)/2);

我已经更改了代码 但我犯了一些错误而且我遇到了错误,

a = load('V1.csv');
X = double(a(:,1:12));
Y = double(a(:,13));
% train data
datall=[X,Y];
A=datall;
n = 40;
ordering = randperm(n);
B = A(ordering, :);  
good=B; 
inpt=good(:,1:12);
target=good(:,13);
k=10;
cvFolds = crossvalind('Kfold', target, k);   %# get indices of 10-fold CV
cp = classperf(target);                      %# init performance tracker
svmModel=[];
for i = 1:k 
    testIdx = (cvFolds == i);    %# get indices of test    instances
trainIdx = ~testIdx;   
C = 0.1:0.1:1; 
S = 0.1:0.1:1; 
fscores = zeros(numel(C), numel(S)); %// Pre-allocation
for c = 1:numel(C)   
for s = 1:numel(S)
    vals = crossval(@(XTRAIN, YTRAIN, XVAL, YVAL)(fun(XTRAIN, YTRAIN, XVAL, YVAL, C(c), S(c))),inpt(trainIdx,:),target(trainIdx));
    fscores(c,s) = mean(vals);
end
end
 end

[cbest, sbest] = find(fscores == max(fscores(:)));
C_final = C(cbest);
S_final = S(sbest);    

.......

和功能.....

.....
function fscore = fun(XTRAIN, YTRAIN, XVAL, YVAL, C, S)
svmModel = svmtrain(XTRAIN, YTRAIN, ...
   'Autoscale',true, 'Showplot',false, 'Method','ls', ...
  'BoxConstraint', C, 'Kernel_Function','rbf', 'RBF_Sigma', S);

   pred = svmclassify(svmModel, XVAL, 'Showplot',false);

   cp = classperf(YVAL, pred)
   %# get accuracy
    accuracy=cp.CorrectRate*100
    sensitivity=cp.Sensitivity*100
    specificity=cp.Specificity*100
    PPV=cp.PositivePredictiveValue*100
    NPV=cp.NegativePredictiveValue*100
    %# get confusion matrix
    %# columns:actual, rows:predicted, last-row: unclassified instances
    cp.CountingMatrix
    recallP = sensitivity;
    recallN = specificity;
    precisionP = PPV;
    precisionN = NPV;
    f1P = 2*((precisionP*recallP)/(precisionP + recallP));
    f1N = 2*((precisionN*recallN)/(precisionN + recallN));
    fscore = ((f1P+f1N)/2);

    end

2 个答案:

答案 0 :(得分:1)

所以基本上你想要采用你的这一行:

svmModel = svmtrain(input(trIdx,:), target(trIdx), ...
       'Autoscale',true, 'Showplot',false, 'Method','ls', ...
      'BoxConstraint',0.1, 'Kernel_Function','rbf', 'RBF_Sigma',0.1);

将其置于一个循环中,该循环会改变您的'BoxConstraint''RBF_Sigma'参数,然后使用crossval输出该迭代参数组合的f1分数。

您可以使用与libsvm代码示例完全相同的单个for循环(即使用meshgrid1:numel(),这可能更快)或嵌套的for循环。我将使用嵌套循环,以便您同时使用两种方法:

C = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300] %// you must choose your own set of values for the parameters that you want to test. You can either do it this way by explicitly typing out a list
S = 0:0.1:1 %// or you can do it this way using the : operator
fscores = zeros(numel(C), numel(S)); %// Pre-allocation
for c = 1:numel(C)   
    for s = 1:numel(S)
        vals = crossval(@(XTRAIN, YTRAIN, XVAL, YVAL)(fun(XTRAIN, YTRAIN, XVAL, YVAL, C(c), S(c)),input(trIdx,:),target(trIdx));
        fscores(c,s) = mean(vals);
    end
end

%// Then establish the C and S that gave you the bet f-score. Don't forget that c and s are just indexes though!
[cbest, sbest] = find(fscores == max(fscores(:)));
C_final = C(cbest);
S_final = S(sbest);

现在我们只需要定义函数fun。关于fun

,文档可以这么说
  

fun是具有两个输入的功能的函数句柄,即训练   X,XTRAIN的子集,以及X,XTEST的测试子集,如下所示:

     

testval = fun(XTRAIN,XTEST)每次调用它时,应该使用fun   XTRAIN适合模型,然后返回计算的一些标准testval   使用该拟合模型的XTEST。

所以fun需要:

  • 输出单个f-score
  • 将X和Y的训练和测试集作为输入。请注意,这些都是您实际训练集的子集!可以把它们想象成训练集的训练和验证SUBSET。另请注意,crossval将为您分割这些设置!
  • 在训练子集上训练分类器(使用循环中的当前CS参数)
  • 在测试(或验证相当)子集
  • 上运行新的分类器
  • 计算并输出效果指标(在您的情况下,您希望获得f1分数)

您会注意到fun无法使用任何额外参数,这就是我将其包装在匿名函数中的原因,以便我们可以传递当前CS 。(即所有@(...)(fun(...))以上内容。这只是将我们的六个参数fun“转换”为crossval所需的4参数的技巧。

function fscore = fun(XTRAIN, YTRAIN, XVAL, YVAL, C, S)

   svmModel = svmtrain(XTRAIN, YTRAIN, ...
       'Autoscale',true, 'Showplot',false, 'Method','ls', ...
      'BoxConstraint', C, 'Kernel_Function','rbf', 'RBF_Sigma', S);

   pred = svmclassify(svmModel, XVAL, 'Showplot',false);

   CP = classperf(YVAL, pred)

   fscore = ... %// You can do this bit the same way you did earlier
end

答案 1 :(得分:0)

我发现target(trainIdx)唯一的问题。这是一个行向量,所以我只是将target(trainIdx)替换为target(trainIdx)这是一个列向量。