火花柱明智的字数

时间:2015-01-27 08:36:41

标签: scala apache-spark summary

我们正在尝试在spark中生成数据集的列式统计信息。除了使用统计库中的汇总函数。我们正在使用以下程序:

  1. 我们确定具有字符串值的列

  2. 为整个数据集生成键值对,使用列号作为键,列值作为值

  3. 生成新格式的地图

    (K,V) - >((K,V),1)

  4. 然后我们使用reduceByKey来查找所有列中所有唯一值的总和。我们缓存此输出以减少进一步的计算时间。

    在下一步中,我们使用for循环遍历列以查找所有列的统计信息。

    我们试图通过再次利用map reduce方法来减少for循环,但我们无法找到实现它的方法。这样做将允许我们在一次执行中为所有列生成列统计信息。 for循环方法按顺序运行,使其非常慢。

    代码:

    //drops the header
    
        def dropHeader(data: RDD[String]): RDD[String] = {
             data.mapPartitionsWithIndex((idx, lines) => {
               if (idx == 0) {
                 lines.drop(1)
               }
               lines
             })
           }
    
        def retAtrTuple(x: String) = {
           val newX = x.split(",")
           for (h <- 0 until newX.length) 
              yield (h,newX(h))
        }
    
    
    
        val line = sc.textFile("hdfs://.../myfile.csv")
    
        val withoutHeader: RDD[String] = dropHeader(line)
    
        val kvPairs = withoutHeader.flatMap(retAtrTuple) //generates a key-value pair where key is the column number and value is column's value
    
    
        var bool_numeric_col = kvPairs.map{case (x,y) => (x,isNumeric(y))}.reduceByKey(_&&_).sortByKey()    //this contains column indexes as key and boolean as value (true for numeric and false for string type)
    
        var str_cols = bool_numeric_col.filter{case (x,y) => y == false}.map{case (x,y) => x}
        var num_cols = bool_numeric_col.filter{case (x,y) => y == true}.map{case (x,y) => x}
    
        var str_col = str_cols.toArray   //array consisting the string col
        var num_col = num_cols.toArray   //array consisting numeric col
    
    
        val colCount = kvPairs.map((_,1)).reduceByKey(_+_)
        val e1 = colCount.map{case ((x,y),z) => (x,(y,z))}
        var numPairs = e1.filter{case (x,(y,z)) => str_col.contains(x) }
    
        //running for loops which needs to be parallelized/optimized as it sequentially operates on each column. Idea is to find the top10, bottom10 and number of distinct elements column wise
        for(i <- str_col){
           var total = numPairs.filter{case (x,(y,z)) => x==i}.sortBy(_._2._2)
           var leastOnes = total.take(10)
           println("leastOnes for Col" + i)
           leastOnes.foreach(println)
           var maxOnes = total.sortBy(-_._2._2).take(10)
           println("maxOnes for Col" + i)
           maxOnes.foreach(println)
           println("distinct for Col" + i + " is " + total.count)
        }
    

2 个答案:

答案 0 :(得分:2)

让我稍微简化一下你的问题。 (实际上很多。)我们有一个RDD[(Int, String)],我们希望为每个String找到前10个最常见的Int(它们都在0-100范围内)。< / p>

不像在示例中那样进行排序,而是使用Spark内置RDD.top(n)方法更有效。它的运行时间与数据的大小呈线性关系,并且需要移动的数据少于一种数据。

考虑RDD.scalatop的实施情况。您希望执行相同操作,但每个Int密钥有一个优先级队列(堆)。代码变得相当复杂:

import org.apache.spark.util.BoundedPriorityQueue // Pretend it's not private.

def top(n: Int, rdd: RDD[(Int, String)]): Map[Int, Iterable[String]] = {
  // A heap that only keeps the top N values, so it has bounded size.
  type Heap = BoundedPriorityQueue[(Long, String)]
  // Get the word counts.
  val counts: RDD[[(Int, String), Long)] =
    rdd.map(_ -> 1L).reduceByKey(_ + _)
  // In each partition create a column -> heap map.
  val perPartition: RDD[Map[Int, Heap]] =
    counts.mapPartitions { items =>
      val heaps =
        collection.mutable.Map[Int, Heap].withDefault(i => new Heap(n))
      for (((k, v), count) <- items) {
        heaps(k) += count -> v
      }
      Iterator.single(heaps)
    }
  // Merge the per-partition heap maps into one.
  val merged: Map[Int, Heap] =
    perPartition.reduce { (heaps1, heaps2) =>
      val heaps =
        collection.mutable.Map[Int, Heap].withDefault(i => new Heap(n))
      for ((k, heap) <- heaps1.toSeq ++ heaps2.toSeq) {
        for (cv <- heap) {
          heaps(k) += cv
        }
      }
      heaps
    }
  // Discard counts, return just the top strings.
  merged.mapValues(_.map { case(count, value) => value })
}

这很有效,但是因为我们需要同时处理多个列而感到痛苦。每列一个RDD会更容易,每个列只需调用rdd.top(10)

不幸的是,将RDD分成N个较小的RDD的天真方法是N次传递:

def split(together: RDD[(Int, String)], columns: Int): Seq[RDD[String]] = {
  together.cache // We will make N passes over this RDD.
  (0 until columns).map {
    i => together.filter { case (key, value) => key == i }.values
  }
}

更有效的解决方案可能是按键将数据写入单独的文件,然后将其加载回单独的RDD。这在Write to multiple outputs by key Spark - one Spark job中进行了讨论。

答案 1 :(得分:0)

感谢@Daniel Darabos的回答。但是有一些错误。

  1. 混合使用Map和collection.mutable.Map

  2. withDefault((i:Int)=&gt; new Heap(n))在设置堆(k)+ = count - &gt;时不会创建新堆v

  3. 混合使用括号
  4. 以下是修改后的代码:

    //import org.apache.spark.util.BoundedPriorityQueue // Pretend it's not private. copy to your own folder and import it
    import org.apache.log4j.{Level, Logger}
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    
    
    object BoundedPriorityQueueTest {
    
      //  https://stackoverflow.com/questions/28166190/spark-column-wise-word-count
      def top(n: Int, rdd: RDD[(Int, String)]): Map[Int, Iterable[String]] = {
        // A heap that only keeps the top N values, so it has bounded size.
        type Heap = BoundedPriorityQueue[(Long, String)]
        // Get the word counts.
        val counts: RDD[((Int, String), Long)] =
        rdd.map(_ -> 1L).reduceByKey(_ + _)
        // In each partition create a column -> heap map.
        val perPartition: RDD[collection.mutable.Map[Int, Heap]] =
        counts.mapPartitions { items =>
          val heaps =
            collection.mutable.Map[Int, Heap]() // .withDefault((i: Int) => new Heap(n))
          for (((k, v), count) <- items) {
            println("\n---")
            println("before add " + ((k, v), count) + ", the map is: ")
            println(heaps)
            if (!heaps.contains(k)) {
              println("not contains key " + k)
              heaps(k) = new Heap(n)
              println(heaps)
            }
            heaps(k) += count -> v
            println("after add " + ((k, v), count) + ", the map is: ")
            println(heaps)
    
          }
          println(heaps)
          Iterator.single(heaps)
        }
        // Merge the per-partition heap maps into one.
        val merged: collection.mutable.Map[Int, Heap] =
        perPartition.reduce { (heaps1, heaps2) =>
          val heaps =
            collection.mutable.Map[Int, Heap]() //.withDefault((i: Int) => new Heap(n))
          println(heaps)
          for ((k, heap) <- heaps1.toSeq ++ heaps2.toSeq) {
            for (cv <- heap) {
              heaps(k) += cv
            }
          }
          heaps
        }
        // Discard counts, return just the top strings.
        merged.mapValues(_.map { case (count, value) => value }).toMap
      }
    
      def main(args: Array[String]): Unit = {
        Logger.getRootLogger().setLevel(Level.FATAL) //http://stackoverflow.com/questions/27781187/how-to-stop-messages-displaying-on-spark-console
        val conf = new SparkConf().setAppName("word count").setMaster("local[1]")
        val sc = new SparkContext(conf)
        sc.setLogLevel("WARN") //http://stackoverflow.com/questions/27781187/how-to-stop-messages-displaying-on-spark-console
    
    
        val words = sc.parallelize(List((1, "s11"), (1, "s11"), (1, "s12"), (1, "s13"), (2, "s21"), (2, "s22"), (2, "s22"), (2, "s23")))
        println("# words:" + words.count())
    
        val result = top(1, words)
    
        println("\n--result:")
        println(result)
        sc.stop()
    
        print("DONE")
      }
    
    }