我想绘制一个二维图形,其中x轴为术语,y轴为TFIDF得分(或文档ID),用于我的句子列表。我使用scikit learn's fit_transform()来获取scipy矩阵,但我不知道如何使用该矩阵绘制图形。我试图得到一个情节,看看我的句子可以用kmeans进行分类。
以下是fit_transform(sentence_list)
的输出:
(文件ID,期号)tfidf得分
(0, 1023) 0.209291711271
(0, 924) 0.174405532933
(0, 914) 0.174405532933
(0, 821) 0.15579574484
(0, 770) 0.174405532933
(0, 763) 0.159719994016
(0, 689) 0.135518787598
这是我的代码:
sentence_list=["Hi how are you", "Good morning" ...]
vectorizer=TfidfVectorizer(min_df=1, stop_words='english', decode_error='ignore')
vectorized=vectorizer.fit_transform(sentence_list)
num_samples, num_features=vectorized.shape
print "num_samples: %d, num_features: %d" %(num_samples,num_features)
num_clusters=10
km=KMeans(n_clusters=num_clusters, init='k-means++',n_init=10, verbose=1)
km.fit(vectorized)
PRINT km.labels_ # Returns a list of clusters ranging 0 to 10
谢谢,
答案 0 :(得分:29)
当您使用Bag of Words时,每个句子都会在长度等于词汇的高维空间中表示。如果要在2D中表示这一点,则需要减小尺寸,例如使用具有两个组件的PCA:
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.decomposition import PCA
from sklearn.pipeline import Pipeline
import matplotlib.pyplot as plt
newsgroups_train = fetch_20newsgroups(subset='train',
categories=['alt.atheism', 'sci.space'])
pipeline = Pipeline([
('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
])
X = pipeline.fit_transform(newsgroups_train.data).todense()
pca = PCA(n_components=2).fit(X)
data2D = pca.transform(X)
plt.scatter(data2D[:,0], data2D[:,1], c=data.target)
plt.show() #not required if using ipython notebook
现在您可以计算并绘制群集输入此数据:
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=2).fit(X)
centers2D = pca.transform(kmeans.cluster_centers_)
plt.hold(True)
plt.scatter(centers2D[:,0], centers2D[:,1],
marker='x', s=200, linewidths=3, c='r')
plt.show() #not required if using ipython notebook
答案 1 :(得分:1)
只需为标签分配一个变量,然后使用该变量来表示颜色。前
km = Kmeans().fit(X)
clusters = km.labels_.tolist()
然后c=clusters