F#:递归收集并过滤N-ary树

时间:2010-05-11 23:54:22

标签: f# n-ary-tree

这伤害了我的大脑!

我想在树结构上进行递归,并将与某个过滤器匹配的所有实例收集到一个列表中。

这是一个示例树结构

type Tree =
| Node of int * Tree list

这是一个测试样本树:

let test = 
    Node((1,
            [Node(2,
                    [Node(3,[]);
                    Node(3,[])]);
            Node(3,[])]))

使用和int值为3的节点收集和过滤应该给出如下输出:

[Node(3,[]);Node(3,[]);Node(3,[])]

6 个答案:

答案 0 :(得分:6)

以下递归函数应该可以解决这个问题:

// The 'f' parameter is a predicate specifying 
// whether element should be included in the list or not 
let rec collect f (Node(n, children) as node) = 
  // Process recursively all children
  let rest = children |> List.collect (collect f)
  // Add the current element to the front (in case we want to)
  if (f n) then node::rest else rest

// Sample usage
let nodes = collect (fun n -> n%3 = 0) tree

函数List.collect将提供的函数应用于所有元素 list children - 每次调用都会返回一个元素列表和List.collect 将所有返回的列表连接成一个。

或者你可以写(这个maay帮助理解代码是如何工作的):

let rest = 
   children |> List.map (fun n -> collect f n)
            |> List.concat

同样的事情也可以使用列表推导来编写:

let rec collect f (Node(n, children) as node) = 
  [ for m in children do 
      // add all returned elements to the result
      yield! collect f m
    // add the current node if the predicate returns true
    if (f n) then yield node ]

编辑:更新代码以返回节点,如kvb所示。

BTW:到目前为止,显示一些您尝试编写的代码通常是个好主意。这有助于人们了解您不理解的部分,因此您将获得更多有用的答案(并且它也被视为礼貌)

答案 1 :(得分:3)

更复杂的尾递归解决方案。

let filterTree (t : Tree) (predicate : int -> bool) =
    let rec filter acc = function
        | (Node(i, []) as n)::tail -> 
            if predicate i then filter (n::acc) tail
            else filter acc tail
        | (Node(i, child) as n)::tail -> 
            if predicate i then filter (n::acc) (tail @ child)
            else filter acc (tail @ child)
        | [] -> acc

    filter [] [t]

答案 2 :(得分:2)

仅仅显示F# Sequences Expression的用法(可能不是最佳方法,我认为Tomas的解决方案可能更好):

type Tree =
  | Node of int * Tree list

let rec filterTree (t : Tree) (predicate : int -> bool) =
  seq {
    match t with
    | Node(i, tl) ->
        if predicate i then yield t
        for tree in tl do
          yield! filterTree tree predicate 
  }

let test = Node (1, [ Node(2, [ Node(3,[]); Node(3,[]) ]); Node(3,[]) ])

printfn "%A" (filterTree test (fun x -> x = 3))

答案 3 :(得分:1)

当我的大脑受伤,因为它被困在一棵树上,我尽可能简单明了地说出我想要的东西:

  • 给定一个信息树,列出与谓词匹配的所有子树(在本例中,info = 3)。

一种直接的方法是列出树的所有节点,然后过滤谓词。

type 'info tree = Node of 'info * 'info tree list

let rec visit = function
    | Node( info, [] )  as node -> [ node ]
    | Node( info, children ) as node -> node :: List.collect visit children

let filter predicate tree = 
    visit tree
    |> List.filter (fun (Node(info,_)) -> predicate info)

这是针对OP的样本数据运行的树过滤器:

let result = filter (fun info -> info = 3) test

让我感到惊讶的一件事是代码适用于任何具有适当谓词的信息类型:

let test2 = 
    Node(("One",
            [Node("Two",
                    [Node("Three",[Node("Five",[]);Node("Three",[])]);
                    Node("Three",[])]);
            Node("Three",[])]))

let res2 = filter  (fun info -> info = "Three") test2

或者,如果您想列出信息而不是子树,则代码非常简单:

let rec visit = function
    | Node( info, [] )  -> [ info ]
    | Node( info, children ) -> info :: List.collect visit children

let filter predicate tree = 
    visit tree
    |> List.filter predicate

支持相同的查询,但只返回'信息记录,而不是树结构:

let result = filter (fun info -> info = 3) test

> val result : int list = [3; 3; 3; 3]

答案 4 :(得分:0)

Tomas的方法看起来很标准,但与你的例子并不完全一致。如果您确实需要匹配节点列表而不是值,则应该可以:

let rec filter f (Node(i,l) as t) =
  let rest = List.collect (filter f) l
  if f t then t::rest
  else rest

let filtered = filter (fun (Node(i,_)) -> i=3) test

答案 5 :(得分:0)

这是一个过度设计的解决方案,但它显示了对Partial Active Patterns的关注点的分离。这不是部分活动模式的最佳示例,但它仍然是一项有趣的练习。匹配语句按顺序进行评估。

let (|EqualThree|_|) = function
    | Node(i, _) as n when i = 3 -> Some n
    | _ -> None

let (|HasChildren|_|) = function
    | Node(_, []) -> None
    | Node(_, children) as n -> Some children
    | _ -> None

let filterTree3 (t : Tree) (predicate : int -> bool) =
    let rec filter acc = function
        | EqualThree(n)::tail & HasChildren(c)::_ -> filter (n::acc) (tail @ c)
        | EqualThree(n)::tail -> filter (n::acc) tail
        | HasChildren(c)::tail -> filter acc (tail @ c)
        | _::tail -> filter acc tail
        | [] -> acc

    filter [] [t]