我很擅长使用数据表,并想要一些帮助汇总一些数据。
Login OpenTime CloseTime OpenedValueUSD ClosedValueUSD Year Month TransferredValue Identifier
859 04/02/2014 07:55 05/02/2014 15:37 10000 10000 2014 2 0 1
859 07/02/2014 03:16 07/02/2014 03:51 8960.755 8960.755 2014 2 0 2
859 11/02/2014 12:41 13/02/2014 11:56 13635.178 13606.901 2014 2 0 3
859 11/02/2014 13:34 11/02/2014 15:34 13635.178 13635.178 2014 2 13635.178 4
859 12/02/2014 13:46 14/02/2014 09:59 13660.246 13649.278 2014 2 13635.178 5
859 13/02/2014 15:33 13/02/2014 15:42 13606.901 13606.901 2014 2 13660.246 6
859 25/03/2014 14:52 26/03/2014 12:58 10000 10000 2014 3 0 7
对于每一行,我想汇总在该交易之前开立的所有交易,并在该交易开启后关闭。例如,第三行的交易在第四次交易之前开盘,但仅在第四次交易开盘后关闭。因此,我接受了该交易的OpenedValueUSD(以及任何其他适当的交易(在本例中为none))并将其放在TransferredValue列中。
这是当前代码:
tradeData[,TransferredValue:=sum(tradeData$OpenedValueUSD[OpenTime <
tradeData$OpenTime & CloseTime > tradeData$OpenTime & Login ==
tradeData$Login]), by="Identifier"]
答案 0 :(得分:7)
这是使用foverlaps()
的另一种方式,它不需要按行分组。我会打电话给你的 data.table dt
。
将OpenTime
和CloseTime
转换为POSIXct格式,如@ alex23lemm所示。
添加一个等于tmpTime
的临时列OpenTime
。我们将在foverlaps()
中使用它。
dt[, tmpTime := OpenTime]
setkey()
在Login, OpenTime, CloseTime
列上。
setkey(dt, Login, OpenTime, CloseTime)
使用foverlaps()
,我们现在将Login, OpenTime, tmpTime
中的哪些时间间隔完全落入 Login, OpenTime, CloseTime
。
olaps = foverlaps(dt, dt, by.x=c("Login", "OpenTime", "tmpTime"),
which=TRUE, nomatch=0L, type="within")
by.y
会自动成为关键列。
删除自我重叠,即删除xid == yid
。
olaps = olaps[xid != yid]
# xid yid
# 1: 4 3
# 2: 5 3
# 3: 6 5
将xid
行分配给与yid
对应的值。并删除tmpTime
。
dt[olaps$xid, TransferredValue :=
dt$OpenedValueUSD[olaps$yid]][, tmpTime := NULL]
# Login OpenTime CloseTime OpenedValueUSD ClosedValueUSD Year Month TransferredValue Identifier
# 1: 859 2014-02-04 07:55:00 2014-02-05 15:37:00 10000.000 10000.000 2014 2 0.00 1
# 2: 859 2014-02-07 03:16:00 2014-02-07 03:51:00 8960.755 8960.755 2014 2 0.00 2
# 3: 859 2014-02-11 12:41:00 2014-02-13 11:56:00 13635.178 13606.901 2014 2 0.00 3
# 4: 859 2014-02-11 13:34:00 2014-02-11 15:34:00 13635.178 13635.178 2014 2 13635.18 4
# 5: 859 2014-02-12 13:46:00 2014-02-14 09:59:00 13660.246 13649.278 2014 2 13635.18 5
# 6: 859 2014-02-13 15:33:00 2014-02-13 15:42:00 13606.901 13606.901 2014 2 13660.25 6
# 7: 859 2014-03-25 14:52:00 2014-03-26 12:58:00 10000.000 10000.000 2014 3 0.00 7
答案 1 :(得分:3)
这应该产生预期的结果:
tradeData[,OpenTime:=as.POSIXct(OpenTime,format="%d/%m/%Y %H:%M")]
tradeData[,CloseTime:=as.POSIXct(CloseTime,format="%d/%m/%Y %H:%M")]
tradeData[,TransferredValue:=sum(tradeData$OpenedValueUSD[tradeData$OpenTime < OpenTime &
tradeData$CloseTime > OpenTime]), by = 'Identifier']
tradeData
# Login OpenTime CloseTime OpenedValueUSD ClosedValueUSD Year Month
# 1: 859 2014-02-04 07:55:00 2014-02-05 15:37:00 10000.000 10000.000 2014 2
# 2: 859 2014-02-07 03:16:00 2014-02-07 03:51:00 8960.755 8960.755 2014 2
# 3: 859 2014-02-11 12:41:00 2014-02-13 11:56:00 13635.178 13606.901 2014 2
# 4: 859 2014-02-11 13:34:00 2014-02-11 15:34:00 13635.178 13635.178 2014 2
# 5: 859 2014-02-12 13:46:00 2014-02-14 09:59:00 13660.246 13649.278 2014 2
# 6: 859 2014-02-13 15:33:00 2014-02-13 15:42:00 13606.901 13606.901 2014 2
# 7: 859 2014-03-25 14:52:00 2014-03-26 12:58:00 10000.000 10000.000 2014 3
# Identifier TransferredValue
# 1: 1 0.00
# 2: 2 0.00
# 3: 3 0.00
# 4: 4 13635.18
# 5: 5 13635.18
# 6: 6 13660.25
# 7: 7 0.00
数据:强>
tradeData <- data.table(Login = c(859, 859, 859, 859, 859, 859, 859),
OpenTime = c("04/02/2014 07:55", "07/02/2014 03:16", "11/02/2014 12:41", "11/02/2014 13:34", "12/02/2014 13:46",
"13/02/2014 15:33", "25/03/2014 14:52"),
CloseTime = c("05/02/2014 15:37", "07/02/2014 03:51", "13/02/2014 11:56", "11/02/2014 15:34", "14/02/2014 09:59",
"13/02/2014 15:42", "26/03/2014 12:58"),
OpenedValueUSD = c(10000.000, 8960.755, 13635.178, 13635.178, 13660.246, 13606.901, 10000.000),
ClosedValueUSD = c(10000.000, 8960.755, 13606.901, 13635.178, 13649.278, 13606.901, 10000.000),
Year = c(2014, 2014, 2014, 2014, 2014, 2014, 2014),
Month = c(2, 2, 2, 2, 2, 2, 3),
Identifier = c(1, 2, 3, 4, 5, 6, 7))