所以我想知道我是否可以使用matplotlib制作分形火焰,并认为一个好的测试将是sierpinski三角形。我通过将x范围从-2,2到0,400以及y范围从0,2到0,200归一化来修改我刚刚执行混沌游戏的工作版本。我还将x和y坐标截断为2小数位并乘以100,以便坐标可以放入我可以应用颜色贴图的矩阵中。这是我正在处理的代码(请原谅杂乱):
import numpy as np
import matplotlib.pyplot as plt
import math
import random
def f(x, y, n):
N = np.array([[x, y]])
M = np.array([[1/2.0, 0], [0, 1/2.0]])
b = np.array([[.5], [0]])
b2 = np.array([[0], [.5]])
if n == 0:
return np.dot(M, N.T)
elif n == 1:
return np.dot(M, N.T) + 2*b
elif n == 2:
return np.dot(M, N.T) + 2*b2
elif n == 3:
return np.dot(M, N.T) - 2*b
def norm_x(n, minX_1, maxX_1, minX_2, maxX_2):
rng = maxX_1 - minX_1
n = (n - minX_1) / rng
rng_2 = maxX_2 - minX_2
n = (n * rng_2) + minX_2
return n
def norm_y(n, minY_1, maxY_1, minY_2, maxY_2):
rng = maxY_1 - minY_1
n = (n - minY_1) / rng
rng_2 = maxY_2 - minY_2
n = (n * rng_2) + minY_2
return n
# Plot ranges
x_min, x_max = -2.0, 2.0
y_min, y_max = 0, 2.0
# Even intervals for points to compute orbits of
x_range = np.arange(x_min, x_max, (x_max - x_min) / 400.0)
y_range = np.arange(y_min, y_max, (y_max - y_min) / 200.0)
mat = np.zeros((len(x_range) + 1, len(y_range) + 1))
random.seed()
x = 1
y = 1
for i in range(0, 100000):
n = random.randint(0, 3)
V = f(x, y, n)
x = V.item(0)
y = V.item(1)
mat[norm_x(x, -2, 2, 0, 400), norm_y(y, 0, 2, 0, 200)] += 50
plt.xlabel('x0')
plt.ylabel('y')
fig = plt.figure(figsize=(10,10))
plt.imshow(mat, cmap="spectral", extent=[-2,2, 0, 2])
plt.show()
这里的数学看起来很稳固,所以我怀疑在处理“mat”矩阵中的事物以及那里的值如何与colormap相对应时,我会如何处理奇怪的事情。
答案 0 :(得分:1)
如果我正确理解您的问题,您需要使用.T
方法转置矩阵。所以只需替换
fig = plt.figure(figsize=(10,10))
plt.imshow(mat, cmap="spectral", extent=[-2,2, 0, 2])
plt.show()
通过
fig = plt.figure(figsize=(10,10))
ax = gca()
ax.imshow(mat.T, cmap="spectral", extent=[-2,2, 0, 2], origin="bottom")
plt.show()
参数origin=bottom
告诉imshow
将矩阵的原点放在图的底部。
希望它有所帮助。