为什么tsne.fit_transform([[]])
实际上会返回一些内容?
from sklearn.manifold import TSNE
import numpy
tsne = TSNE(n_components=2,
early_exaggeration=4.0,
learning_rate=1000.0,
metric='euclidean',
init='random',
random_state=42)
# returns [[ 4.96714153e-05 -1.38264301e-05]]
print tsne.fit_transform(numpy.array([[]]))
但将init
从random
更改为pca
会引发异常:ValueError: failed to create intent(cache|hide)|optional array-- must have defined dimensions but got (0,)
。
答案 0 :(得分:2)
当您使用init='random'
嵌入X_embedded
gets initialized to None
以及随后使用随机权重时,这是相关代码:
<强> scikit-learn/sklearn/manifold/t_sne.py
强>
if X_embedded is None:
# Initialize embedding randomly
X_embedded = 1e-4 * random_state.randn(n_samples, self.n_components)
使用init='pca'
,嵌入通过PCA转换进行初始化:
if self.init == 'pca':
pca = RandomizedPCA(n_components=self.n_components,
random_state=random_state)
X_embedded = pca.fit_transform(X)
空数组失败。
答案 1 :(得分:0)
这是一个错误。它已在this commit中修复,并应在版本0.16.x之后包含。
您可以使用pip安装当前的sklearn示例版本:
(sudo) pip install scikit-learn
现在,sklearn会引发错误:
In [1]: from sklearn.manifold import TSNE
In [2]: TSNE().fit_transform([[]])
---------------------------------------------------------------------------
ValueError
Traceback (most recent call last)
<ipython-input-2-39cfca09a0bd> in <module>()
----> 1 TSNE().fit_transform([[]])
...
/usr/local/lib/python2.7/dist-packages/sklearn/utils/validation.pyc in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features)
365 raise ValueError("Found array with %d feature(s) (shape=%s) while"
366 " a minimum of %d is required."
--> 367 % (n_features, shape_repr, ensure_min_features))
368 return array
369
ValueError: Found array with 0 feature(s) (shape=(1, 0)) while a minimum of 1 is required.