想象一下经典的OMP任务:
using namespace std;
int main() {
vector<double> v;
// generate some data
generate_n(back_inserter(v), 1ul << 18,
bind(uniform_real_distribution<double>(0,1.0), default_random_engine { random_device {}() }));
long double sum = 0;
{
#pragma omp parallel for reduction(+:sum)
for(size_t i = 0; i < v.size(); i++)
{
sum += v[i];
}
}
std::cout << "Done: sum = " << sum << "\n";
}
我无法想出如何报告进度。毕竟,OMP正在为我处理团队线程之间的所有协调,而且我没有一个全球状态。
我可能会使用常规std::thread
并从那里观察一些共享变量,但是不会有更多的&#34; omp-ish&#34;实现这个目标的方法?
答案 0 :(得分:6)
让团队中的每个线程跟踪本地进度并以原子方式更新全局计数器。您仍然可以让另一个线程观察它,或者,如下面的示例中所示,您可以在OMP关键部分中执行终端输出。
这里的关键是调整不会导致高频率更新的步长,因为关键区域(以及较小程度上的原子加载/存储)的锁定会降低性能。 / em>的
<强> Live On Coliru 强>
#include <omp.h>
#include <vector>
#include <random>
#include <algorithm>
#include <iterator>
#include <functional>
#include <iostream>
#include <iomanip>
using namespace std;
int main() {
vector<double> v;
// generate some data
generate_n(back_inserter(v), 1ul << 18, bind(uniform_real_distribution<double>(0,1.0), default_random_engine { random_device {}() }));
auto step_size = 100ul;
auto total_steps = v.size() / step_size + 1;
size_t steps_completed = 0;
long double sum = 0;
#pragma omp parallel
{
size_t local_count = 0;
#pragma omp for reduction(+:sum)
for(size_t i = 0; i < v.size(); i++)
{
sum += v[i];
if (local_count++ % step_size == step_size-1)
{
#pragma omp atomic
++steps_completed;
if (steps_completed % 100 == 1)
{
#pragma omp critical
std::cout << "Progress: " << steps_completed << " of " << total_steps << " (" << std::fixed << std::setprecision(1) << (100.0*steps_completed/total_steps) << "%)\n";
}
}
}
}
std::cout << "Done: sum = " << sum << "\n";
}
最后,打印结果。输出:
Progress: 1 of 2622 (0.0%)
Progress: 191 of 2622 (7.3%)
Progress: 214 of 2622 (8.2%)
Progress: 301 of 2622 (11.5%)
Progress: 401 of 2622 (15.3%)
Progress: 501 of 2622 (19.1%)
Progress: 601 of 2622 (22.9%)
Progress: 701 of 2622 (26.7%)
Progress: 804 of 2622 (30.7%)
Progress: 901 of 2622 (34.4%)
Progress: 1003 of 2622 (38.3%)
Progress: 1101 of 2622 (42.0%)
Progress: 1201 of 2622 (45.8%)
Progress: 1301 of 2622 (49.6%)
Progress: 1402 of 2622 (53.5%)
Progress: 1501 of 2622 (57.2%)
Progress: 1601 of 2622 (61.1%)
Progress: 1701 of 2622 (64.9%)
Progress: 1801 of 2622 (68.7%)
Progress: 1901 of 2622 (72.5%)
Progress: 2001 of 2622 (76.3%)
Progress: 2101 of 2622 (80.1%)
Progress: 2203 of 2622 (84.0%)
Progress: 2301 of 2622 (87.8%)
Progress: 2402 of 2622 (91.6%)
Progress: 2501 of 2622 (95.4%)
Progress: 2601 of 2622 (99.2%)
Done: sum = 130943.8
答案 1 :(得分:2)
下面我的代码类似于sehe代码,但是有一些差异,这使得我可以处理跳过的点来报告,因为它们具有完全相等,涉及按模除法。此外,全局计数器收集所有线程的实际循环执行,但它可能不精确 - 这对于此特定问题是可接受的。我只使用主线程进行报告。
const size_t size = ...
const size_t step_size = size / 100;
const size_t nThreads = ...
const size_t local_count_max = step_size / nThreads;
size_t count = 0;
#pragma omp parallel num_threads(nThreads)
{
size_t reported_count = 0;
size_t local_count = 0;
#pragma omp for
for (size_t i = 0; i < size; ++i)
{
<... do some useful work ...>
// -------------------------- update local and global progress counters
if (local_count >= local_count_max)
{
#pragma omp atomic
count += local_count_max;
local_count = 0;
}
else
{
++local_count;
}
// ------------------------------ report progress (in master thread only)
#pragma omp master
if (count - reported_count >= step_size)
{
<... report the progress ...>
reported_count = count;
}
}
}
答案 2 :(得分:2)
在使用#pragma omp atomic
的没有本机原子支持(甚至使用它们)的处理器上,正如其他答案所示,可能会降低程序的速度。
进度指示器的想法是为用户提供想法何时完成某事。如果你的目标加/减总运行时间的一小部分,那么用户就不会太烦恼了。也就是说,用户更希望事情能够更快地完成,而不是更确切地知道事情何时结束。
出于这个原因,我通常只跟踪一个线程的进度,并使用它来估计总进度。这适用于每个线程具有类似工作负载的情况。由于您使用的是#pragma omp parallel for
,因此您可能会在没有相互依赖性的情况下处理一系列相似的元素,因此我的假设可能对您的用例有效。
我已将此逻辑包装在类ProgressBar
中,我通常将其包含在头文件中,以及其辅助类Timer
。该类使用ANSI控制信号来保持事物的美观。
输出如下:
[====== ] (12% - 22.0s - 4 threads)
通过声明-DNOPROGRESS
编译标志,编译器也可以轻松消除进度条的所有开销。
代码和示例用法如下:
#include <iostream>
#include <chrono>
#include <thread>
#include <iomanip>
#include <stdexcept>
#ifdef _OPENMP
///Multi-threading - yay!
#include <omp.h>
#else
///Macros used to disguise the fact that we do not have multithreading enabled.
#define omp_get_thread_num() 0
#define omp_get_num_threads() 1
#endif
///@brief Used to time how intervals in code.
///
///Such as how long it takes a given function to run, or how long I/O has taken.
class Timer{
private:
typedef std::chrono::high_resolution_clock clock;
typedef std::chrono::duration<double, std::ratio<1> > second;
std::chrono::time_point<clock> start_time; ///< Last time the timer was started
double accumulated_time; ///< Accumulated running time since creation
bool running; ///< True when the timer is running
public:
Timer(){
accumulated_time = 0;
running = false;
}
///Start the timer. Throws an exception if timer was already running.
void start(){
if(running)
throw std::runtime_error("Timer was already started!");
running=true;
start_time = clock::now();
}
///Stop the timer. Throws an exception if timer was already stopped.
///Calling this adds to the timer's accumulated time.
///@return The accumulated time in seconds.
double stop(){
if(!running)
throw std::runtime_error("Timer was already stopped!");
accumulated_time += lap();
running = false;
return accumulated_time;
}
///Returns the timer's accumulated time. Throws an exception if the timer is
///running.
double accumulated(){
if(running)
throw std::runtime_error("Timer is still running!");
return accumulated_time;
}
///Returns the time between when the timer was started and the current
///moment. Throws an exception if the timer is not running.
double lap(){
if(!running)
throw std::runtime_error("Timer was not started!");
return std::chrono::duration_cast<second> (clock::now() - start_time).count();
}
///Stops the timer and resets its accumulated time. No exceptions are thrown
///ever.
void reset(){
accumulated_time = 0;
running = false;
}
};
///@brief Manages a console-based progress bar to keep the user entertained.
///
///Defining the global `NOPROGRESS` will
///disable all progress operations, potentially speeding up a program. The look
///of the progress bar is shown in ProgressBar.hpp.
class ProgressBar{
private:
uint32_t total_work; ///< Total work to be accomplished
uint32_t next_update; ///< Next point to update the visible progress bar
uint32_t call_diff; ///< Interval between updates in work units
uint32_t work_done;
uint16_t old_percent; ///< Old percentage value (aka: should we update the progress bar) TODO: Maybe that we do not need this
Timer timer; ///< Used for generating ETA
///Clear current line on console so a new progress bar can be written
void clearConsoleLine() const {
std::cerr<<"\r\033[2K"<<std::flush;
}
public:
///@brief Start/reset the progress bar.
///@param total_work The amount of work to be completed, usually specified in cells.
void start(uint32_t total_work){
timer = Timer();
timer.start();
this->total_work = total_work;
next_update = 0;
call_diff = total_work/200;
old_percent = 0;
work_done = 0;
clearConsoleLine();
}
///@brief Update the visible progress bar, but only if enough work has been done.
///
///Define the global `NOPROGRESS` flag to prevent this from having an
///effect. Doing so may speed up the program's execution.
void update(uint32_t work_done0){
//Provide simple way of optimizing out progress updates
#ifdef NOPROGRESS
return;
#endif
//Quick return if this isn't the main thread
if(omp_get_thread_num()!=0)
return;
//Update the amount of work done
work_done = work_done0;
//Quick return if insufficient progress has occurred
if(work_done<next_update)
return;
//Update the next time at which we'll do the expensive update stuff
next_update += call_diff;
//Use a uint16_t because using a uint8_t will cause the result to print as a
//character instead of a number
uint16_t percent = (uint8_t)(work_done*omp_get_num_threads()*100/total_work);
//Handle overflows
if(percent>100)
percent=100;
//In the case that there has been no update (which should never be the case,
//actually), skip the expensive screen print
if(percent==old_percent)
return;
//Update old_percent accordingly
old_percent=percent;
//Print an update string which looks like this:
// [================================================ ] (96% - 1.0s - 4 threads)
std::cerr<<"\r\033[2K["
<<std::string(percent/2, '=')<<std::string(50-percent/2, ' ')
<<"] ("
<<percent<<"% - "
<<std::fixed<<std::setprecision(1)<<timer.lap()/percent*(100-percent)
<<"s - "
<<omp_get_num_threads()<< " threads)"<<std::flush;
}
///Increment by one the work done and update the progress bar
ProgressBar& operator++(){
//Quick return if this isn't the main thread
if(omp_get_thread_num()!=0)
return *this;
work_done++;
update(work_done);
return *this;
}
///Stop the progress bar. Throws an exception if it wasn't started.
///@return The number of seconds the progress bar was running.
double stop(){
clearConsoleLine();
timer.stop();
return timer.accumulated();
}
///@return Return the time the progress bar ran for.
double time_it_took(){
return timer.accumulated();
}
uint32_t cellsProcessed() const {
return work_done;
}
};
int main(){
ProgressBar pg;
pg.start(100);
//You should use 'default(none)' by default: be specific about what you're
//sharing
#pragma omp parallel for default(none) schedule(static) shared(pg)
for(int i=0;i<100;i++){
pg.update(i);
std::this_thread::sleep_for(std::chrono::seconds(1));
}
}