require(plyr)
require(dplyr)
set.seed(8)
df <- data.frame(
group = sample(c("A","B"), 10, replace=T),
subgroup = sample(c("a", "b", "c"),10, replace=T),
value = runif(10, -1,1)
)
df %>% arrange(group,subgroup)
给出:
group subgroup value
1 A a -0.1841505
2 A a 0.3265360
3 A a -0.8045035
4 A b -0.5526222
5 B a 0.2238653
6 B a 0.0552373
7 B b 0.2297515
8 B b -0.5700525
9 B b 0.6347312
10 B c 0.9550054
我可以指示值是高还是低,例如:
df2<-
df %>% mutate(reg = ifelse(value > 0, "high", "low"))
df2
给出:
group subgroup value reg
1 A b -0.5526222 low
2 A a -0.1841505 low
3 B b 0.2297515 high
4 B b -0.5700525 low
5 A a 0.3265360 high
6 B c 0.9550054 high
7 A a -0.8045035 low
8 B a 0.2238653 high
9 B a 0.0552373 high
10 B b 0.6347312 high
问题:
我想得到列low.group
,high.group
,low.subgroup
和high.subgroup
,表示在该组中找到了多少次高值和低值(我想到{{1} } dplyr
和group_by(group)
,可能还有n()
)以及组+子组级别(summarise()
)。这将生成6行×6列数据帧(A / B和a / b / c的组合,以及group_by(group, subgroup)
列,group
,subgroup
,low.group
, high.group
和low.subgroup
)。第一列应为(A,a,3,1,2,1),第二列(A,b,3,1,1,0)等。
我可以算一下,例如由:
high.subgroup
但是如何将df %>%
group_by(group,reg) %>%
mutate(n.group=n())
分成两列n.group
和low.group
。子组也存在同样的问题。
我确信high.group
,plyr
和dplyr
中的功能可以将计数和摘要结合起来,但是如何?
更新: 以下是我将得到的手工制作结果:
reshape2
答案 0 :(得分:2)
有点冗长,但似乎做了预期的事情:
library(dplyr)
library(tidyr)
df %>%
mutate(value = ifelse(value > 0, "high", "low")) %>%
group_by(group, subgroup, value) %>%
mutate(sub = n()) %>%
group_by(group, value) %>%
mutate(grp = n()) %>%
distinct(group, subgroup, value) %>%
gather(key, val, sub:grp) %>%
unite(x, value:key, sep = ".") %>%
spread(x, val, fill = 0)
#Source: local data frame [5 x 6]
#
# group subgroup high.grp high.sub low.grp low.sub
#1 A a 1 1 3 2
#2 A b 0 0 3 1
#3 B a 5 2 0 0
#4 B b 5 2 1 1
#5 B c 5 1 0 0
请注意,组合A-c不会出现在样本数据中,因此不会出现在输出中。
答案 1 :(得分:0)
docendo discimus解决方案的变体 - 使用更多reshape2和更少的tidyr - 是:
library(dplyr)
library(tidyr)
library(stringr)
library(reshape2)
df %>%
mutate(value=ifelse(value > 0, "high", "low")) %>%
group_by(group, subgroup, value) %>%
mutate(sub = n()) %>%
group_by(group, value) %>%
mutate(grp = n()) %>%
gather(key,val,sub:grp) %>%
mutate(val.key=str_c(value,".",key)) %>%
distinct() %>%
dcast(group+subgroup~val.key, value.var="val", fill=0)