我正在尝试使用Python软件包Boto从Glacier下载大型存档(~1 TB)。我使用的当前方法如下所示:
import os
import boto.glacier
import boto
import time
ACCESS_KEY_ID = 'XXXXX'
SECRET_ACCESS_KEY = 'XXXXX'
VAULT_NAME = 'XXXXX'
ARCHIVE_ID = 'XXXXX'
OUTPUT = 'XXXXX'
layer2 = boto.connect_glacier(aws_access_key_id = ACCESS_KEY_ID,
aws_secret_access_key = SECRET_ACCESS_KEY)
gv = layer2.get_vault(VAULT_NAME)
job = gv.retrieve_archive(ARCHIVE_ID)
job_id = job.id
while not job.completed:
time.sleep(10)
job = gv.get_job(job_id)
if job.completed:
print "Downloading archive"
job.download_to_file(OUTPUT)
问题是作业ID在24小时后到期,这还不足以检索整个存档。我需要将下载分解为至少4个。我该怎么做并将输出写入单个文件?
答案 0 :(得分:3)
似乎您可以在调用chunk_size
时简单地指定job.download_to_file
参数,如下所示:
if job.completed:
print "Downloading archive"
job.download_to_file(OUTPUT, chunk_size=1024*1024)
但是,如果您无法在24小时内下载所有块,我认为您不能选择仅使用layer2下载您错过的那个块。
使用layer1,您只需使用方法get_job_output并指定要下载的字节范围。
看起来像那样:
file_size = check_file_size(OUTPUT)
if job.completed:
print "Downloading archive"
with open(OUTPUT, 'wb') as output_file:
i = 0
while True:
response = gv.get_job_output(VAULT_NAME, job_id, (file_size + 1024 * 1024 * i, file_size + 1024 * 1024 * (i + 1)))
output_file.write(response)
if len(response) < 1024 * 1024:
break
i += 1
使用此脚本,您应该能够在脚本失败时重新运行该脚本,并继续将您的存档下载到您离开的位置。
通过挖掘boto代码,我在Job类中找到了一个你也可以使用的“私有”方法:_download_byte_range。使用此方法,您仍然可以使用layer2。
file_size = check_file_size(OUTPUT)
if job.completed:
print "Downloading archive"
with open(OUTPUT, 'wb') as output_file:
i = 0
while True:
response = job._download_byte_range(file_size + 1024 * 1024 * i, file_size + 1024 * 1024 * (i + 1)))
output_file.write(response)
if len(response) < 1024 * 1024:
break
i += 1
答案 1 :(得分:0)
您必须在import pandas as pd
from pyspark.ml import Pipeline, Transformer
from pyspark.ml.feature import Bucketizer
from pyspark.sql import SparkSession, DataFrame
data = pd.DataFrame({
'ball_column': [0, 1, 2, 3],
'keep_column': [7, 8, 9, 10],
'hall_column': [14, 15, 16, 17],
'bag_this_1': [21, 31, 41, 51],
'bag_this_2': [21, 31, 41, 51]
})
df = spark.createDataFrame(data)
df.show()
class EditColumnNameWithReplacement(Transformer):
def __init__(self, existing, new):
super().__init__()
self.existing = existing
self.new = new
def _transform(self, df: DataFrame) -> DataFrame:
for (x, y) in zip(self.existing, self.new):
df = df.withColumnRenamed(x, y)
return df.select(*self.new)
## Capture 'bigInt' columns, and drop the rest
bigint_list = [name for name, types in df.dtypes if types == 'bigint' or types == 'double']
edited_columns = [''.join(y for y in x if y.isalnum()) for x in bigint_list]
spike_cols = [col for col in edited_columns if "bag" in col]
reformattedColumns = EditColumnNameWithReplacement(
existing=bigint_list, new=edited_columns)
bagging = [
Bucketizer(
splits=[-float("inf"), 10, 100, float("inf")],
inputCol=x,
outputCol=x + "bucketed") for x in spike_cols
]
stages_ = [reformattedColumns] + bagging
Pipeline(stages=stages_).fit(df).transform(df).show()
函数中添加region_name,如下所示:
boto.connect_glacier