我尝试将模板图片中的SURF关键点与视频Feed中显示的内容进行匹配,但在尝试调用FlannBasedMatcher
时出现以下错误。
captureFromCam.cpp: In function ‘void matchAndDrawKeypoints(cv::Mat, IplImage*)’:
captureFromCam.cpp:110:55: error: no matching function for call to ‘cv::FlannBasedMatcher::match(cv::FileNode&, cv::Mat&, std::vector<cv::DMatch>&)’
captureFromCam.cpp:110:55: note: candidates are:
In file included from /usr/local/include/opencv/cv.h:68:0,
from captureFromCam.cpp:2:
/usr/local/include/opencv2/features2d/features2d.hpp:1110:18: note: void cv::DescriptorMatcher::match(const cv::Mat&, const cv::Mat&, std::vector<cv::DMatch>&, const cv::Mat&) const
/usr/local/include/opencv2/features2d/features2d.hpp:1110:18: note: no known conversion for argument 1 from ‘cv::FileNode’ to ‘const cv::Mat&’
/usr/local/include/opencv2/features2d/features2d.hpp:1128:18: note: void cv::DescriptorMatcher::match(const cv::Mat&, std::vector<cv::DMatch>&, const std::vector<cv::Mat>&)
/usr/local/include/opencv2/features2d/features2d.hpp:1128:18: note: no known conversion for argument 1 from ‘cv::FileNode’ to ‘const cv::Mat&’
我试图通过读取图像,计算关键点和描述符并以yml
格式保存它们来做到这一点:
// code to detect features/descriptors
...
cv::FileStorage fs(fileNamePostCut + ".yml", cv::FileStorage::WRITE);
write(fs, fileNamePostCut + "Keypoints_1", keypoints_1);
write(fs, fileNamePostCut + "Descriptors_1", img_descriptors_1);
fs.release();
在一个单独的函数中,我然后尝试加载关键点和描述符,并将它们与为视频流计算的值进行比较:
matchAndDrawKeypoints (cv::Mat img_1, IplImage* frames)
std::vector<cv::KeyPoint> templateKeypoints;
std::vector<cv::KeyPoint> templateDescriptor;
cv::FileStorage fs2("VWlogo.yml", cv::FileStorage::READ);
cv::FileNode kptFileNode = fs2["VWlogoKeypoints_1"];
read(kptFileNode, templateKeypoints);
cv::FileNode desFileNode = fs2["VWlogoDescriptors_1"];
read(desFileNode, templateDescriptor);
fs2.release();
cv::FlannBasedMatcher matcher;
std::vector<cv::DMatch> matches;
matcher.match(desFileNode, img_descriptors_1, matches);
我假设问题是来自yml
文件的描述符没有正确加载,或者视频输入的描述符没有正确传递。
以下是有关信息流的一些额外信息:
main()
调用makeitgrey(frame)
来电detectKeypoints(grey_frame)
,返回makeitgrey()
,返回main()
然后调用matchAndDrawKeypoints (img_1, frames)
编辑: 计算关键点和声明的代码。
cv::Mat img_keypoints_1;
cv::Mat img_1;
cv::Mat img_descriptors_1;
std::vector<cv::KeyPoint> keypoints_1;
std::vector<cv::KeyPoint> descriptors_1;
main()
将视频传递给makeitgrey()
,传递给:
IplImage* detectKeypointsImage (IplImage* img_1) {
int minHessian = 400;
cv::SurfFeatureDetector detector(minHessian);
detector.detect(img_1, keypoints_1);
drawKeypoints(img_1, keypoints_1, img_keypoints_1);
cv::SurfDescriptorExtractor extractor;
extractor.compute(img_1, keypoints_1, img_descriptors_1);
return img_1;
}
模板图像作为命令行arg传入,然后传递给原始帖子中显示的detectTemplateKeypoints(img_1, argv[1]);
。
答案 0 :(得分:2)
代码中存在两个问题:
std::vector<cv::KeyPoint> templateDescriptor;
不是描述符的正确类型。用于描述符计算。在http://docs.opencv.org/doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.html的示例代码中,您可以看到,一堆关键点的描述符通常是类型cv::Mat
。因此,请将其更改为cv::Mat templateDescriptor;
和cv::Mat descriptors_1;
matcher.match(desFileNode, img_descriptors_1, matches);
必须是matcher.match(templateDescriptor, img_descriptors_1, matches);
,因为您要匹配描述符而不是文件存储节点。