我正在尝试在我的玩具示例中使用cublas
函数cublasSgemmBatched
。在这个例子中,我首先分配尺寸为[h_AA, h_BB
] [6
]和5
的尺寸为[h_CC
] [{{}的二维数组:6
1}}]。之后,我将其复制到设备,执行1
并尝试将数组cublasSgemmBatched
复制回主机阵列d_CC
。但是,我收到了一个错误(h_CC
)与设备进行主机复制,我不确定是否正确地将数组复制到设备中:
cudaErrorLaunchFailure
因此,此代码有效,但最后int main(){
cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;
float **h_AA, **h_BB, **h_CC;
h_AA = new float*[6];
h_BB = new float*[6];
h_CC = new float*[6];
for (int i = 0; i < 6; i++){
h_AA[i] = new float[5];
h_BB[i] = new float[5];
h_CC[i] = new float[1];
for (int j = 0; j < 5; j++){
h_AA[i][j] = j;
h_BB[i][j] = j;
}
h_CC[i][0] = 1;
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
(const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
cudaerr = cudaMemcpy(h_CC, d_CC, 6 * sizeof(float*), cudaMemcpyDeviceToHost);
cublasDestroy(handle);
}
返回cudaerr
。我试图在Github上关注此示例代码。
由于
P.S。我不明白的是,cudaErrorLaunchFailure
是什么以及sizeof(float*)
知道每个数组需要多少内存(就像这里我只确定1维的大小一样)。
更新:我做到了!!:
cudaMalloc
答案 0 :(得分:5)
所以,我想出了答案(感谢@Robert Crovella):为了创建device array of pointers to device arrays
(对于批处理函数),首先应创建host array of pointers to device arrays
,然后将其复制到device array of pointers to device arrays
{1}}。转回主机也是如此:一个应该使用中间host array of pointers to device arrays
。
cublasHandle_t handle;
cudaError_t cudaerr;
cudaEvent_t start, stop;
cublasStatus_t stat;
const float alpha = 1.0f;
const float beta = 0.0f;
float *h_A = new float[5];
float *h_B = new float[5];
float *h_C = new float[6];
for (int i = 0; i < 5; i++)
{
h_A[i] = i;
h_B[i] = i;
}
float **h_AA, **h_BB, **h_CC;
h_AA = (float**)malloc(6* sizeof(float*));
h_BB = (float**)malloc(6 * sizeof(float*));
h_CC = (float**)malloc(6 * sizeof(float*));
for (int i = 0; i < 6; i++){
cudaMalloc((void **)&h_AA[i], 5 * sizeof(float));
cudaMalloc((void **)&h_BB[i], 5 * sizeof(float));
cudaMalloc((void **)&h_CC[i], sizeof(float));
cudaMemcpy(h_AA[i], h_A, 5 * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(h_BB[i], h_B, 5 * sizeof(float), cudaMemcpyHostToDevice);
}
float **d_AA, **d_BB, **d_CC;
cudaMalloc(&d_AA, 6 * sizeof(float*));
cudaMalloc(&d_BB, 6 * sizeof(float*));
cudaMalloc(&d_CC, 6 * sizeof(float*));
cudaerr = cudaMemcpy(d_AA, h_AA, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_BB, h_BB, 6 * sizeof(float*), cudaMemcpyHostToDevice);
cudaerr = cudaMemcpy(d_CC, h_CC, 6 * sizeof(float*), cudaMemcpyHostToDevice);
stat = cublasCreate(&handle);
stat = cublasSgemmBatched(handle, CUBLAS_OP_N, CUBLAS_OP_N, 1, 1, 5, &alpha,
(const float**)d_AA, 1, (const float**)d_BB, 5, &beta, d_CC, 1, 6);
cudaerr = cudaMemcpy(h_CC, d_CC, sizeof(float), cudaMemcpyDeviceToHost);
for (int i = 0; i < 6;i++)
cudaMemcpy(h_C+i, h_CC[i], sizeof(float), cudaMemcpyDeviceToHost);
cublasDestroy(handle);