根据我的理解,Julia应该更快速地制作循环并且与矢量化操作一样快。我写了一个简单函数的三个版本,它使用for循环和矢量化操作找到距离,而使用DataFrames找到后者:
x = rand(500)
y = rand(500)
a = rand()
b = rand()
function devect()
dist = Array(Float64, 0)
twins = Array(Float64, 0,2)
for i in 1:500
dist = [dist; sqrt((x[i] - a)^2 + (y[i] - b)^2)]
if dist[end] < 0.05
twins = [twins; [x y][end,:]]
end
end
return twins
end
function vect()
d = sqrt((x-a).^2 + (y-b).^2)
return [x y][d .< 0.05,:]
end
using DataFrames
function df_vect()
df = DataFrame(x=x, y=y)
dist = sqrt((df[:x]-a).^2 + (df[:y]-b).^2)
return df[dist .< 0.05,:]
end
n = 10^3
@time for i in [1:n] devect() end
@time for i in [1:n] vect() end
@time for i in [1:n] df_vect() end
输出:
elapsed time: 4.308049576 seconds (1977455752 bytes allocated, 24.77% gc time)
elapsed time: 0.046759167 seconds (37295768 bytes allocated, 54.36% gc time)
elapsed time: 0.052463997 seconds (30359752 bytes allocated, 49.44% gc time)
为什么矢量化版本的执行速度要快得多?
答案 0 :(得分:11)
http://julia.readthedocs.org/en/latest/manual/performance-tips/#avoid-global-variables
您的代码在任何地方使用非常量全局变量,这意味着您基本上回到了解释语言的性能领域,因为在编译时无法保证它们的类型。要快速加速,只需使用const
为所有全局变量分配添加前缀。
答案 1 :(得分:7)
跟进我对用于在devect中构建解决方案的方法的评论。这是我的代码
julia> x, y, a, b = rand(500), rand(500), rand(), rand()
julia> function devect{T}(x::Vector{T}, y::Vector{T}, a::T, b::T)
res = Array(T, 0)
dim1 = 0
for i = 1:size(x,1)
if sqrt((x[i]-a)^2+(y[i]-b)^2) < 0.05
push!(res, x[i])
push!(res, y[i])
dim1 += 1
end
end
reshape(res, (2, dim1))'
end
devect (generic function with 1 method)
julia> function vect{T}(x::Vector{T}, y::Vector{T}, a::T, b::T)
d = sqrt((x-a).^2+(y-b).^2)
[x y][d.<0.05, :]
end
vect (generic function with 1 method)
julia> @time vect(x, y, a, b)
elapsed time: 3.7118e-5 seconds (37216 bytes allocated)
2x2 Array{Float64,2}:
0.978099 0.0405639
0.94757 0.0224974
julia> @time vect(x, y, a, b)
elapsed time: 7.1977e-5 seconds (37216 bytes allocated)
2x2 Array{Float64,2}:
0.978099 0.0405639
0.94757 0.0224974
julia> @time devect(x, y, a, b)
elapsed time: 1.7146e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
0.978099 0.0405639
0.94757 0.0224974
julia> @time devect(x, y, a, b)
elapsed time: 1.3065e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
0.978099 0.0405639
0.94757 0.0224974
julia> @time devect(x, y, a, b)
elapsed time: 1.8059e-5 seconds (376 bytes allocated)
2x2 Array{Float64,2}:
0.978099 0.0405639
0.94757 0.0224974
可能有更快的方法来执行devect解决方案但注意分配的字节差异。如果一个devectorized解决方案分配的内存比矢量化解决方案多,那么它可能是错误的(至少在Julia中)。
答案 2 :(得分:2)
您的devectorized代码效率不高。
我做了以下更改:
我展示了两种不同的方式,你可以用更直接的方式对输出进行显示
const x = rand(500)
const y = rand(500)
const a = rand()
const b = rand()
function devect()
dist = Array(Float64, 500)
for i in 1:500
dist[i] = sqrt((x[i] - a)^2 + (y[i] - b)^2)
end
return [x y][dist .< 0.05,:]
end
function devect2()
pairs = Array(Float64, 500, 2)
for i in 1:500
dist = sqrt((x[i] - a)^2 + (y[i] - b)^2)
if dist < 0.05
pairs[i,:] = [x[i], y[i]]
end
end
return pairs
end
function vect()
d = sqrt((x-a).^2 + (y-b).^2)
return [x y][d .< 0.05,:]
end
using DataFrames
function df_vect()
df = DataFrame(x=x, y=y)
dist = sqrt((df[:x]-a).^2 + (df[:y]-b).^2)
return df[dist .< 0.05,:]
end
const n = 10^3
@time for i in [1:n] devect() end
@time for i in [1:n] devect2() end
@time for i in [1:n] vect() end
@time for i in [1:n] df_vect() end
输出
elapsed time: 0.009283872 seconds (16760064 bytes allocated)
elapsed time: 0.003116157 seconds (8456064 bytes allocated)
elapsed time: 0.050070483 seconds (37248064 bytes allocated, 44.50% gc time)
elapsed time: 0.0566218 seconds (30432064 bytes allocated, 40.35% gc time)