我使用MatLab网站上的代码,"使用L a b * Color Space"进行基于颜色的分割: http://www.mathworks.com/help/images/examples/color-based-segmentation-using-the-l-a-b-color-space.html
所以我试图自己选择一些区域,而不是使用"加载region_coordinates",使用roipoly(fabric),但我卡住了。如何保存刚绘制的多边形的坐标?我实际上是在解决方案II的页面底部遵循lennon310的建议: A few questions about color segmentation with L*a*b*
我不确定何时保存region_coordinates
并执行size(region_coordinates,1)
我做了以下更改(步骤1):
1)删除"加载region_coordinates"
2)添加" region_coordinates = roipoly(fabric);"
以下是代码:
` %%第1步
fabric = imread(file);
figure(1); %Create figure window. "If h is not the handle and is not the Number property value of an existing figure, but is an integer, then figure(h) creates a figure object and assigns its Number property the value h."
imshow(fabric)
title('fabric')
%load regioncoordinates; % 6 marices(?) labelled val(:,:,1-6), 5x2 (row x column)
region_coordinates = roipoly(fabric);
nColors = 6;
sample_regions = false([size(fabric,1) size(fabric,2) nColors]); %Initializing an Image Dimension, 3x3 (:,:,:) to zero? Zeros() for arrays only I guess.
%Size one is column, size two is row?
for count = 1:nColors
sample_regions(:,:,count) = roipoly(fabric,region_coordinates(:,1,count),region_coordinates(:,2,count));
end
figure, imshow(sample_regions(:,:,2)),title('sample region for red');
%%第2步
% Convert your fabric RGB image into an L*a*b* image using rgb2lab .
lab_fabric = rgb2lab(fabric);
%Calculate the mean a* and b* value for each area that you extracted with roipoly. These values serve as your color markers in a*b* space.
a = lab_fabric(:,:,2);
b = lab_fabric(:,:,3);
color_markers = zeros([nColors, 2]);%... I think this is initializing a 6x2 blank(0) array for colour storage. 6 for colours, 2 for a&b colourspace.
for count = 1:nColors
color_markers(count,1) = mean2(a(sample_regions(:,:,count))); %Label for repmat, Marker for
color_markers(count,2) = mean2(b(sample_regions(:,:,count)));
end
%For example, the average color of the red sample region in a*b* space is
fprintf('[%0.3f,%0.3f] \n',color_markers(2,1),color_markers(2,2));
%%步骤3:使用最近邻规则对每个像素进行分类 %
color_labels = 0:nColors-1;
% Initialize matrices to be used in the nearest neighbor classification.
a = double(a);
b = double(b);
distance = zeros([size(a), nColors]);
%Perform classification, Elucidean Distance.
for count = 1:nColors
distance(:,:,count) = ( (a - color_markers(count,1)).^2 + (b - color_markers(count,2)).^2 ).^0.5;
end
[~, label] = min(distance,[],3);
label = color_labels(label);
clear distance;
%%步骤4:显示最近邻分类的结果 % %标签矩阵包含织物图像中每个像素的颜色标签。 %使用标签矩阵按颜色分隔原始织物图像中的对象。
rgb_label = repmat(label,[1 1 3]);
segmented_images = zeros([size(fabric), nColors],'uint8');
for count = 1:nColors
color = fabric;
color(rgb_label ~= color_labels(count)) = 0;
segmented_images(:,:,:,count) = color;
end
%figure, imshow(segmented_images(:,:,:,1)), title('Background of Fabric');
%Looks different somehow.
figure, imshow(segmented_images(:,:,:,2)), title('red objects');
figure, imshow(segmented_images(:,:,:,3)), title('green objects');
figure, imshow(segmented_images(:,:,:,4)), title('purple objects');
figure, imshow(segmented_images(:,:,:,5)), title('magenta objects');
figure, imshow(segmented_images(:,:,:,6)), title('yellow objects');
`
答案 0 :(得分:3)
您可以在调用roipoly
时使用输出参数检索多边形的坐标。然后,您可以获得多边形的二进制蒙版,以及顶点坐标(如果需要)。
简单示例演示:
clear
clc
close all
A = imread('cameraman.tif');
figure;
imshow(A)
%// The vertices of the polygon are stored in xi and yi;
%// PolyMask is a binary image where pixels == 1 are white.
[polyMask, xi, yi] = roipoly(A);
这看起来像这样:
如果你想看到带有二进制掩码的顶点:
%// display polymask
imshow(polyMask)
hold on
%// Highlight vertices in red
scatter(xi,yi,60,'r')
hold off
其中包含以下内容:
总结一下:
1)多边形的顶点存储在xi和yi中。
2)您可以使用imshow(polyMask)
绘制多边形的binaryMask。
3)如果您需要白色像素的坐标,可以使用以下内容:
[row_white,col_white] = find(polyMask == 1);
你很高兴。希望有所帮助!