将nls拟合为分组数据R.

时间:2015-01-11 00:46:50

标签: r nls

我试图将非线性模型拟合到整个季节中在几个地块上收集的一系列测量值。以下是较大数据集的子样本。 数据:

  

dput(nee.example)   结构(列表(julian = c(159L,159L,159L,159L,159L,159L,   159L,159L,159L,159L,159L,159L,159L,159L,169L,169L,169L,   169L,169L,169L,169L,169L,169L,169L,169L,169L,169L,169L,   169L),blk =结构(c(1L,1L,1L,1L,1L,1L,1L,1L,1L,   1L,1L,1L,1L,1L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,   2L,2L,2L,2L),. Label = c(" e"," w"),class =" factor"),type = structure(c (1L,   1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,2L,2L,2L,   2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L,2L),。标签= c(" b",   " g"),class =" factor"),plot = c(1L,1L,1L,1L,2L,2L,2L,   2L,2L,3L,3L,3L,3L,3L,1L,1L,1L,1L,2L,2L,2L,2L,2L,   3L,3L,3L,3L,3L,3L),trt =结构(c(1L,1L,1L,1L,1L,   1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,   1L,1L,1L,1L,1L,1L,1L,1L),。标签=" a",类="因子"),       布= c(25L,50L,75L,100L,0L,25L,50L,75L,100L,0L,       25L,50L,75L,100L,0L,25L,50L,100L,0L,25L,50L,75L,       100L,0L,25L,50L,75L,75L,100L),plotID = c(1L,1L,1L,       1L,2L,2L,2L,2L,2L,3L,3L,3L,3L,3L,13L,13L,13L,       13L,14L,14L,14L,14L,14L,15L,15L,15L,15L,15L,15L       ),flux = c(0.76,0.6,0.67,0.7,1.72,1.63,-7.8,0.89,       0.51,0.76,0.48,0.62,0.18,0.21,3.87,2.44,1.26,-1.39,       2.18,1.9,0.81,-0.04,-0.83,1.99,1.55,5.77,-0.02,-0.16,       -2.12),ChT = c(18.6,19.1,19.6,19.1,16.5,17.3,18.3,       19,18.6,17.2,18.4,19,19.2,20.6,22,21.9,22.4,23.8,       20.7,21.5,22.5,23.3,23.8,20.1,20.8,21.2,21.8,21.8,       21.4),par = c(129.9,210.2,305.4,796.6,1.3,62.7,149.9,       171.2,453.3,1.3,129.7,409.3,610,1148.6,1.3,115.2,       237,814.6,1.3,105.4,293.4,472.1,955.9,1.3,100.5,       290,467,413.6,934.2)),. Name = c(" julian"," blk"," type",   " plot"," trt"," cloth"," plotID"," flux"," ChT& #34;," par"),class =" data.frame",row.names = c(NA,   -29L))

我需要在每个日期的每个图上拟合以下模型(下面的rec.hyp),并检索每个julian-plotID组合的参数估计值。经过一番探讨后,听起来像nlsList是一个理想的功能,因为分组方面:

library(nlme)
rec.hyp <- nlsList(flux ~ Re - ((Amax*par)/(k+par)) | julian/plotID,
             data=nee.example,
             start=c(Re=3, k=300, Amax=5),
             na.action=na.omit)
coef(rec.hyp)

但是我一直收到同样的错误消息:

Error in nls(formula = formula, data = data, start = start, control = control) : 
step factor 0.000488281 reduced below 'minFactor' of 0.000976562

我已尝试调整nls.control中的控件以增加maxIter和tol,但会显示相同的错误消息。并且我已经改变了初始起始值但无济于事。

应该注意的是,我需要使用最小二乘拟合模型,以便与之前的工作保持一致。

问题:

  1. 我的分组结构是否允许在nlsList中使用。换句话说,我可以在julian中嵌套plotID吗?这可能是我错误的来源。

  2. 我已经读过不适当的起始参数估计值会导致错误消息,但更改后会得到相同的消息。

  3. 我觉得我在这里错过了一些简单的东西,但我的大脑却被炒了。

    提前致谢。

1 个答案:

答案 0 :(得分:7)

回答Q1 :您的分组结构是正确的。您可以通过对数据的子集运行nls来验证它:

rec.hyp.test <- nls(flux ~ Re - ((Amax*par)/(k+par)),
                   data=subset(nee.example,julian==159 & plotID==3),
                   start=c(Re=3, k=300, Amax=5),
                   na.action=na.omit)
coef(rec.hyp.test)
#        Re           k        Amax 
# 0.7208943 792.4412287   0.8972519 

coef(rec.hyp)[3,]
#              Re        k      Amax
# 159/3 0.7208943 792.4412 0.8972519

回答Q2 :某些数据集无法通过给定模型正确拟合。根据{{​​1}}公式,可以预期flux ~ Re - ((Amax*par)/(k+par))会随着flux单调减少(或者如果Amax <0则增加)。出于好奇,我绘制了一个导致par失败的数据集:

nls

发现它不是单调的,我甚至说它根本没有任何趋势!我想即使你强迫plot(flux~par,subset(nee.example,julian==159 & plotID==1)) 为这个案子找到一些解决方案,它也可能是一个虚假的解决方案,所以你可能只想让它不合适(即NA)。

enter image description here

我还建议对输入数据和拟合模型质量进行目视检查。使用nlsRreshape2等软件包,您可以轻松地绘制数百个,甚至快速查看它们将帮助您避免麻烦。