Python 2.7.6词典

时间:2015-01-09 07:22:29

标签: python dictionary naming-conventions

我在使用Python 2.7.6时遇到了一些麻烦,从字典中获取信息并使用它做一些有用的事情。我已经在下面附上了我的全部代码,因为我不确定具体是什么错误,这可能不是我期待的。

我正在尝试生成一些测试数据;一堆随机分布的图像源(1' s),它们从正确的位置移动一小部分。我使用字典单独跟踪每个源,并在字典中为包含移位源的每个图像使用字典。

我的问题是当我想拍摄图像中的源的平均运动时。我已经找到了这个地方我相信问题是明确的(大约一半)。我已经尝试了几种不同的技术,它们被注释掉了。目前我只使用3张图片,但我打算大幅增加这个数字。如果我只坚持只有3个,我就会采用不同的方法,并且在很长的路上写下了很多。

我已经考虑过这样的其他问题,但没有找到任何与我的问题有关的内容,这可能是因为我不知道我正在尝试做什么的行话。如果以前曾经问过这个并且已经解决了,那就道歉了。

# Source position-offset tracker

import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import copy
import random
from pylab import boxplot

 #FUNCTIONS


def random_movement(source_positions):
    source_positions_changed={}
    for n in range(len(source_positions)): # n = [0,1]
        key = source_positions.keys()[n]
        del_x = source_positions[key][0]+random.randint(0,1)
        del_y = source_positions[key][1]+random.randint(0,1)
        source_positions_changed[key] = (del_x,del_y)
    return source_positions_changed

 #OTHER CODE

 # put in original positions
 # -> randomly distributed
 # -> of values 0 or 1 only

original_positions = np.random.randint(2,size=(10,10))



 # Tag each source within the image to keep track of them
source_positions = {}
source_count=0
for x in range(len(original_positions)):
    for y in range(len(original_positions[0])):
        if original_positions[x,y] == 1: # finding all sources
            source_count += 1
            index = 'S'+str(source_count)
            source_positions[index] = (x,y) 
                    # attach a source name to its position

source_numbers = len(source_positions)
number_timesteps = 2 # how many images were taken NOT including the original

 # create a dictionary for the timesteps of shifted sources
 # timesteps are the images where the sources have moves from the correct position
dictionary = {}
for x in range(1,number_timesteps+1):
    #exec('dictionary%s = copy.copy(random_movement(source_positions))'%x)
    dictionary['position_changed{0}'.format(x)] = copy.copy(random_movement(source_positions))


 # finding the distances from the sources original positions
 #source_distance_sum = {}

#################################################
### THIS IS WHERE I THINK I'M HAVING PROBLEMS ###
#################################################

# this should take make the motion of any sources that appear outside the range of the image -1
# and for sources that remain in range should find the motion from the correct position
# using equation: a^2 = b^2 + c^2
# should end up with source_distance_sum1 and source_distance_sum2 that have the motions from the correct positions of each source for the images, whose positional information was stored in dictionary['position_changed1'] and dictionary['position_changed2'] respectively
 #source_distance_sum=[]
#distance_moved=[]
for source in range(1,source_numbers+1):
    #source_distance_sum['S{0}'.format(source)]=0
    for tstep in range(1,number_timesteps+1):
        exec('source_distance_sum%s=[]'%tstep)
        if dictionary['position_changed{0}'.format(tstep)]['S{0}'.format(source)][0]>=len(original_positions) or dictionary['position_changed{0}'.format(tstep)]['S{0}'.format(source)][1]>=len(original_positions[0]):
        #if 'dictionary%s[S%s][0]>=len(original_positions) or dictionary%s[S%s][1]>=len(original_positions[0])'%(tstep,source,tstep,source)
            #source_distance_sum['S{0}'.format(source)]=-1
            exec('source_distance_sum%s.append(-1)'%tstep)
            #print 'if 1: '+str(source_distance_sum1)
            #print 'if 2: '+str(source_distance_sum2)
        # dealing with sources moved out of range
        else:
            distance_moved=np.sqrt((source_positions['S{0}'.format(source)][0]-dictionary['position_changed{0}'.format(tstep)]['S{0}'.format(source)][0])**2+(source_positions['S{0}'.format(source)][1]-dictionary['position_changed{0}'.format(tstep)]['S{0}'.format(source)][1])**2)
# I have tried changing distance_moved as well, in similar ways to source_distance_sum, but I have as yet had no luck. 
            #source_distance_sum['S{0}'.format(source)]=distance_moved
            exec('source_distance_sum%s.append(distance_moved)'%tstep)
# why does this not work!!!!????? I really feel like it should...
        # for movement that stays in range
            #print 'else 1: '+str(source_distance_sum1)
            #print 'else 2: '+str(source_distance_sum2)

# then I want to use the information from the source_distance_sum1 & 2 and find the averages. I realise the following code will not work, but I cannot get the previous paragraph to work, so have not moved on to fixing the following. 
 # average distance:
source_distance = []
for source in range(1,len(source_distance_sum)+1):
    if source_distance_sum['S{0}'.format(source)] > -1:
        source_distance.append(source_distance_sum['S{0}'.format(source)])

average = sum(source_distance)/float(len(source_distance))

 # set range of graph 
 #axx_max = np.ceil(max(distance_travelled))
 #axy_max = np.ceil(max(number_of_sources))

 # plot graph
fig = plt.figure()
 #plt.axis([-1,axx_max+1,-1,axy_max+1])
plt.xlabel('Data set')
plt.ylabel('Average distance travelled')
plt.title('There are %s source(s) with %s valid' % (source_count,len(source_distance)))

ax1 = fig.add_subplot(111)
ax1.scatter(1, average, s=10, c='b', marker="+", label='First timestep')
 #ax1.scatter(x[40:],y[40:], s=10, c='r', marker="o", label='second')
plt.legend(loc='upper left');

plt.show()

 # NOTES AND REMOVED CODE

 # Move sources around over time
 # -> keep within a fixed range of motion
 # -> randomly generate motion

 # Calculate motion of sources from images
 # -> ignore direction
 # -> all that move by same magnitude get stored together
 # -> Number of sources against magnitude of motion

 # Make dictionary of number of sources that have moved a certain amount. 
 #source_motion_count = {} # make length of sources, values all 0
 #for elem in range(len(source_distance)):
 #  if type(source_distance[elem])!=str and source_distance[elem]>-1:
 #      source_motion_count[source_distance[elem]] = 0

 #for elem in range(len(source_distance)):
 #  if type(source_distance[elem])!=str and source_distance[elem]>-1:
 #      source_motion_count[source_distance[elem]] += 1

 # Compile count of sources based on movement into graph

 #number_of_sources = []
 #distance_travelled = []

 #for n in range(len(source_motion_count)):
 #  key=source_motion_count.keys()[n]
 #  number_of_sources.append(source_motion_count[key])
 #  distance_travelled.append(key)

1 个答案:

答案 0 :(得分:0)

我通过将该部分转换为自己的功能来修复它。我也改变了一些我想要它做的事情,所以从最初的想法到下面的内容有一些变化。

import math
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import copy
import random
from pylab import boxplot

#------------------------------------------------------------------------#
#--------------------------FUNCTIONS-------------------------------------#
#------------------------------------------------------------------------#

def original_image():
    # create image
    original_positions = np.random.randint(2,size=(11,11))
    # make sure image has uneven lengths - will be useful later
    y = original_positions.shape[0]
    x = original_positions.shape[1]
    if y%2 == 0:
        y-=1

    if x%2 == 0:
        x-=1

    original_positions = original_positions[0:y,0:x]
    return original_positions

def random_movement(source_positions):
    source_positions_changed={}
    # create some random movement in x and y axis, within a certain range
    for n in range(len(source_positions)):
        key = source_positions.keys()[n] # original source positions
        del_x = source_positions[key][0]+random.randint(-1,1)
        del_y = source_positions[key][1]+random.randint(-1,1)
        source_positions_changed[key] = (del_x,del_y)
    return source_positions_changed

def tag_sources(original_positions):
    source_positions = {}
    source_count=0
    # keeping track of all the sources (1's) from original image
    for x in range(len(original_positions)):
        for y in range(len(original_positions[0])):
            if original_positions[x,y] == 1: # finding all sources
                source_count += 1
                index = 'S'+str(source_count)
                source_positions[index] = (x,y) 
    return source_positions

def calc_motion(position_dict_changed, position_dict_original,xaxis_len,yaxis_len):
    position_dict_motion = {}
    for source_num in range(1,len(position_dict_original)+1):
        # make sources that go outside the image range -1
        if position_dict_changed['S{0}'.format(source_num)][1]>=yaxis_len or position_dict_changed['S{0}'.format(source_num)][0]>=xaxis_len:
            position_dict_motion['S{0}'.format(source_num)] = -1
        else:
            # determine x and y motion from original position
            # this is the main difference from the original idea as do not want to average the motion
            x_motion = position_dict_original['S{0}'.format(source_num)][1] - position_dict_changed['S{0}'.format(source_num)][1]
            y_motion = position_dict_original['S{0}'.format(source_num)][0] - position_dict_changed['S{0}'.format(source_num)][0]
            position_dict_motion['S{0}'.format(source_num)] = (y_motion,x_motion)
    return position_dict_motion

#------------------------------------------------------------------------#
#--------------------------OTHER CODE------------------------------------#
#------------------------------------------------------------------------#

# creating random distribution of sources
original_positions = original_image()

orig_xaxis_len = len(original_positions[0])
orig_yaxis_len = len(original_positions)

# tag sources in original_positions
source_positions = tag_sources(original_positions)

source_numbers = len(source_positions)
# how many images were taken NOT including the original
number_timesteps = 2 

# create a dictionary for the timesteps of shifted sources
positions_dict = {}
for x in range(1,number_timesteps+1):
    positions_dict['position_changed{0}'.format(x)] = copy.copy(random_movement(source_positions))

# create a dictionary of the motion from the original position for each image
for x in range(1,number_timesteps+1):
    motion_dict['position_changed{0}'.format(x)] = copy.copy(calc_motion(positions_dict['position_changed{0}'.format(x)],source_positions,orig_xaxis_len,orig_yaxis_len))


print motion_dict