在R中,将数据框对角线转换为行

时间:2015-01-08 20:44:27

标签: r dataframe diagonal

我正在开发一个模型,预测一个年龄组的生育能力。我目前有一个这样的数据框,其中行是年龄,列是年。每个细胞的价值是当年特定年龄的生育率:

> df1
   iso3    sex age fert1953 fert1954 fert1955
14  AUS female  13    0.000  0.00000  0.00000
15  AUS female  14    0.000  0.00000  0.00000
16  AUS female  15   13.108 13.42733 13.74667
17  AUS female  16   26.216 26.85467 27.49333
18  AUS female  17   39.324 40.28200 41.24000

然而,我想要的是每一行都是一个队列。因为行和列表示各个年份,所以可以通过获得对角线来获得群组数据。我正在寻找这样的结果:

> df2
   iso3    sex ageIn1953 fert1953  fert1954  fert1955
14  AUS female        13    0.000   0.00000  13.74667
15  AUS female        14    0.000  13.42733  27.49333
16  AUS female        15   13.108  26.85467  41.24000
17  AUS female        16   26.216  40.28200  [data..] 
18  AUS female        17   39.324  [data..]  [data..] 

这里是df1数据框:

df1 <- structure(list(iso3 = c("AUS", "AUS", "AUS", "AUS", "AUS"), sex = c("female", 
"female", "female", "female", "female"), age = c(13, 14, 15, 
16, 17), fert1953 = c(0, 0, 13.108, 26.216, 39.324), fert1954 = c(0, 
0, 13.4273333333333, 26.8546666666667, 40.282), fert1955 = c(0, 
0, 13.7466666666667, 27.4933333333333, 41.24)), .Names = c("iso3", 
"sex", "age", "fert1953", "fert1954", "fert1955"), class = "data.frame", row.names = 14:18)

编辑:

这是我最终使用的解决方案。它基于David的答案,但我需要为iso3的每个级别执行此操作。

df.ls <- lapply(split(f3, f = f3$iso3), FUN = function(df1) {
  n <- ncol(df1) - 4
  temp <- mapply(function(x, y) lead(x, n = y), df1[, -seq_len(4)], seq_len(n))
  return(cbind(df1[seq_len(4)], temp))
})
f4 <- do.call("rbind", df.ls)

1 个答案:

答案 0 :(得分:4)

我尚未对速度进行测试,但data.table v1.9.5最近实施了一个名为shift

的新(用C编写)超前/滞后函数

因此,对于要转移的列,您可以将其与mapply结合使用,例如

library(data.table)
n <- ncol(df1) - 4 # the number of years - 1
temp <- mapply(function(x, y) shift(x, n = y, type = "lead"), df1[, -seq_len(4)], seq_len(n))
cbind(df1[seq_len(4)], temp) # combining back with the unchanged columns
#    iso3    sex age fert1953 fert1954 fert1955
# 14  AUS female  13    0.000  0.00000 13.74667
# 15  AUS female  14    0.000 13.42733 27.49333
# 16  AUS female  15   13.108 26.85467 41.24000
# 17  AUS female  16   26.216 40.28200       NA
# 18  AUS female  17   39.324       NA       NA

编辑:您可以使用

从GitHub轻松安装data.table的开发版本
library(devtools) 
install_github("Rdatatable/data.table", build_vignettes = FALSE)

无论哪种方式,如果你想要dplyr,这里都是

library(dplyr)
n <- ncol(df1) - 4 # the number of years - 1
temp <- mapply(function(x, y) lead(x, n = y), df1[, -seq_len(4)], seq_len(n))
cbind(df1[seq_len(4)], temp)
#    iso3    sex age fert1953 fert1954 fert1955
# 14  AUS female  13    0.000  0.00000 13.74667
# 15  AUS female  14    0.000 13.42733 27.49333
# 16  AUS female  15   13.108 26.85467 41.24000
# 17  AUS female  16   26.216 40.28200       NA
# 18  AUS female  17   39.324       NA       NA