我正在开发一个模型,预测一个年龄组的生育能力。我目前有一个这样的数据框,其中行是年龄,列是年。每个细胞的价值是当年特定年龄的生育率:
> df1
iso3 sex age fert1953 fert1954 fert1955
14 AUS female 13 0.000 0.00000 0.00000
15 AUS female 14 0.000 0.00000 0.00000
16 AUS female 15 13.108 13.42733 13.74667
17 AUS female 16 26.216 26.85467 27.49333
18 AUS female 17 39.324 40.28200 41.24000
然而,我想要的是每一行都是一个队列。因为行和列表示各个年份,所以可以通过获得对角线来获得群组数据。我正在寻找这样的结果:
> df2
iso3 sex ageIn1953 fert1953 fert1954 fert1955
14 AUS female 13 0.000 0.00000 13.74667
15 AUS female 14 0.000 13.42733 27.49333
16 AUS female 15 13.108 26.85467 41.24000
17 AUS female 16 26.216 40.28200 [data..]
18 AUS female 17 39.324 [data..] [data..]
这里是df1
数据框:
df1 <- structure(list(iso3 = c("AUS", "AUS", "AUS", "AUS", "AUS"), sex = c("female",
"female", "female", "female", "female"), age = c(13, 14, 15,
16, 17), fert1953 = c(0, 0, 13.108, 26.216, 39.324), fert1954 = c(0,
0, 13.4273333333333, 26.8546666666667, 40.282), fert1955 = c(0,
0, 13.7466666666667, 27.4933333333333, 41.24)), .Names = c("iso3",
"sex", "age", "fert1953", "fert1954", "fert1955"), class = "data.frame", row.names = 14:18)
编辑:
这是我最终使用的解决方案。它基于David的答案,但我需要为iso3
的每个级别执行此操作。
df.ls <- lapply(split(f3, f = f3$iso3), FUN = function(df1) {
n <- ncol(df1) - 4
temp <- mapply(function(x, y) lead(x, n = y), df1[, -seq_len(4)], seq_len(n))
return(cbind(df1[seq_len(4)], temp))
})
f4 <- do.call("rbind", df.ls)
答案 0 :(得分:4)
我尚未对速度进行测试,但data.table
v1.9.5最近实施了一个名为shift
因此,对于要转移的列,您可以将其与mapply
结合使用,例如
library(data.table)
n <- ncol(df1) - 4 # the number of years - 1
temp <- mapply(function(x, y) shift(x, n = y, type = "lead"), df1[, -seq_len(4)], seq_len(n))
cbind(df1[seq_len(4)], temp) # combining back with the unchanged columns
# iso3 sex age fert1953 fert1954 fert1955
# 14 AUS female 13 0.000 0.00000 13.74667
# 15 AUS female 14 0.000 13.42733 27.49333
# 16 AUS female 15 13.108 26.85467 41.24000
# 17 AUS female 16 26.216 40.28200 NA
# 18 AUS female 17 39.324 NA NA
编辑:您可以使用
从GitHub轻松安装data.table
的开发版本
library(devtools)
install_github("Rdatatable/data.table", build_vignettes = FALSE)
无论哪种方式,如果你想要dplyr
,这里都是
library(dplyr)
n <- ncol(df1) - 4 # the number of years - 1
temp <- mapply(function(x, y) lead(x, n = y), df1[, -seq_len(4)], seq_len(n))
cbind(df1[seq_len(4)], temp)
# iso3 sex age fert1953 fert1954 fert1955
# 14 AUS female 13 0.000 0.00000 13.74667
# 15 AUS female 14 0.000 13.42733 27.49333
# 16 AUS female 15 13.108 26.85467 41.24000
# 17 AUS female 16 26.216 40.28200 NA
# 18 AUS female 17 39.324 NA NA