这个问题与我之前的question 有关。 (我希望可以提出一个新问题,如果它是基于之前回答的问题。)答案使用dplyr
函数group_by
。我在前一个问题的相同数据框架上弄乱了group_by
并得到了这个结果:
> gpri.l %>% group_by(Point) %>% count(Point)
Source: local data frame [188 x 2]
Point n
1 99 1
2 100 1
3 101 5
4 102 3
5 103 1
6 104 8
7 105 6
8 106 7
9 107 7
10 108 7
.. ... .
> group_by(mtcars, vsam = vs + am)
我尝试了dplyr intro的例子
> group_by(mtcars, vsam = vs + am)
Source: local data frame [32 x 12]
Groups: vsam
mpg cyl disp hp drat wt qsec vs am gear carb vsam
1 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 1
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 1
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 2
4 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 1
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 0
6 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 1
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 0
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 1
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 1
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 1
11 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1
12 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 0
13 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 0
14 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 0
15 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 0
16 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 0
17 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 0
18 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 2
19 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 2
20 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 2
21 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 1
22 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 0
23 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 0
24 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 0
25 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 0
26 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 2
27 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 1
28 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 2
29 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 1
30 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 1
31 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 1
32 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 2
示例中返回了所有行。我之前看到一个关于group_by
和长变量名称问题的问题,但没有解释为什么group_by
不会返回所有188行。我在RStudio中使用R 3.1.2,我刚刚按照question的答案安装了dplyr。
我突然想到问题可能不在于group_by
。我已经完成了group_by
,summarise
和count
的一些不同组合,但却忘记了group_by
的确切问题。所以,或许,确切地说,不是group_by
导致缩短的列表。
答案 0 :(得分:0)
Ckluss向我解释了这个问题。我引用了评论:
“你创建组但不对它们做任何事情(除了引入了一个新变量)。所以data.frame是相同的。 - ckluss”
几个月后编辑:另一个question得到了我想要的东西。这个问题的答案是使用print.data.frame()
或使用as.data.frame()
来查看dplyr操作的输出。