我正在尝试创建一个标记的堆叠条形图,其中只有1个条形图。我的堆栈并不总是足够大以适应文本,所以我希望有一个引导线指向堆栈右侧的标签,用于无法放入堆栈的标签。或者,如果所有标签都在带有引导线的堆栈右侧,那也没关系。
我的data.frame看起来像这样:
Regional.District Municipality Population.2010 mp
Metro Bowen Island 3678 1839.0
Metro Coquitlam 126594 66975.0
Metro Delta 100000 180272.0
Metro Langley City 25858 243201.0
Metro Maple Ridge 76418 294339.0
Metro New West 66892 365994.0
Metro North Vancouver (City) 50725 424802.5
Metro Port Coquitlam 57431 478880.5
Metro Port Moody 33933 524562.5
Metro Surrey 462345 772701.5
Metro West Vancouver 44058 1025903.0
Metro White Rock 19278 1057571.0
Metro Anmore 2203 1068311.5
Metro Belcarra 690 1069758.0
Metro Burnaby 227389 1183797.5
Metro Langley (Town) 104697 1349840.5
Metro Lions Bay 1395 1402886.5
Metro Metro Vancouver-uninc 24837 1416002.5
Metro North Vancouver (District) 88370 1472606.0
Metro Pitt Meadows 18136 1525859.0
Metro Richmond 196858 1633356.0
Metro Vancouver (City) 642843 2053206.5
这就是我目前的工作方式:
这是我想要的工作:
这是我的代码:
library(ggplot2)
ggplot(muns, aes(x = Regional.District, y = Population.2010, fill = Municipality)) +
geom_bar(stat = 'identity', colour = 'gray32', width = 0.6, show_guide = FALSE) +
geom_text(aes(y = muns$mp, label = muns$Municipality), colour = 'gray32')
这可以实现自动化吗?我没有使用ggplot2来实现这一点。 谢谢!
答案 0 :(得分:4)
这是一种可能性。我认为这项工作确实需要一些手工工作,尽管你可以自动化一些流程。我最初调查哪些标签必须留在栏外。然后,我看到一些标签相互重叠。我的解决方案是移动栏左侧的一些标签。 Anmore
是一个棘手的问题。我手动将其y位置移动一点,使其不与White Rock
重叠。
gg1
是基本图形。栏内有标签。创建gg2
以获取应添加到栏右侧的标签。在dan
中,我查看了ggplots使用和修改x值的数据(即x = 1.35)。我也在这里删除了三个地方。对emo
和dan2
中的三个位置进行了类似的处理。在gg3
中,我添加了标签。最后的工作是添加细分。我创建了三个新的数据框来绘制细分。
library(dplyr) # I use the dev version (dplyr 0.4)
library(ggplot2)
# as_data_frame() is available in dplyr 0.4
mydf <- as_data_frame(list(Regional.District = rep("Metro", times = 22),
Municipality = c("Bowen Island", "Coquitlam", "Delta",
"Langley City", "Maple Ridge", "New West",
"North Vancouver (City)", "Port Coquitlam", "Port Moody",
"Surrey", "West Vancouver", "White Rock",
"Anmore", "Belcarra", "Burnaby", "Langley (Town)",
"Lions Bay", "Metro Vancouver-uninc",
"North Vancouver (District)", "Pitt Meadows",
"Richmond", "Vancouver (City)"),
Population = c(3678, 126594, 100000, 25858, 76418, 66892, 50725,
57431, 33933, 462345, 44058, 19278, 2203, 690,
227389, 104697, 1395, 24837, 88370, 18136, 196858,
642843),
mp = c(1839.0, 66975.0, 180272.0, 243201.0, 294339.0, 365994.0,
424802.5, 478880.5, 524562.5, 772701.5, 1025903.0, 1057571.0,
1068311.5, 1069758.0, 1183797.5, 1349840.5, 1402886.5, 1416002.5,
1472606.0, 1525859.0, 1633356.0, 2053206.5)))
# Get label for places which has more than or less than 60,000 people
ana <- mutate(mydf, foo = ifelse(Population > 60000, Municipality, NA))
bob <- mutate(mydf, foo = ifelse(Population > 60000, NA, Municipality))
# Plot with places which have more than 60,000 people
gg1 <- ggplot(mydf, aes(x = Regional.District, y = Population, fill = Municipality)) +
geom_bar(stat = "identity", colour = "gray32", width = 0.4, show_guide = FALSE) +
geom_text(aes(y = ana$mp, label = ana$foo), colour = "gray32", size = 3)
# Plot with places which have less than 60,000 people
gg2 <- ggplot(mydf, aes(x = Regional.District, y = Population, fill = Municipality)) +
geom_bar(stat = "identity", colour = "gray32", width = 0.4, show_guide = FALSE) +
geom_text(aes(y = bob$mp, label = bob$foo), colour = "gray32")
# Label for right
dan <- na.omit(ggplot_build(gg2)$data[[2]]) %>%
filter(!label %in% c("Belcarra", "Metro Vancouver-uninc", "Anmore")) %>%
mutate(x = 1.35)
# Label for left
emo <- filter(ggplot_build(gg2)$data[[2]],
label %in% c("Belcarra", "Metro Vancouver-uninc")) %>%
mutate(x = 0.65)
# Special label for right
dan2 <- filter(ggplot_build(gg2)$data[[2]], label == "Anmore") %>%
mutate(x = 1.35, y = 1098312)
# Add labels
gg3 <- gg1 +
annotate("text", x = dan$x, y = dan$y, label = dan$label, colour = "gray32", size = 3) +
annotate("text", x = emo$x, y = emo$y, label = emo$label, colour = "gray32", size = 3) +
annotate("text", x = dan2$x, y = dan2$y, label = dan2$label, colour = "gray32", size = 3)
# Create data frames for segments
# right seg
r.seg <- data.frame(x = rep(1.2, times = 9),
xend = rep(1.25, times = 9),
y = dan$y,
yend = dan$y)
# left seg
l.seg <- data.frame(x = rep(0.76, times = 2),
xend = rep(0.8, times = 2),
y = emo$y,
yend = emo$y)
# Anmore seg
a.seg <- data.frame(x = 1.2,
xend = 1.25,
y = 1068312,
yend = dan2$y)
# Draw the segments
gg3 +
annotate("segment", x = r.seg$x, xend = r.seg$xend, y = r.seg$y, yend = r.seg$yend) +
annotate("segment", x = l.seg$x, xend = l.seg$xend, y = l.seg$y, yend = l.seg$yend) +
annotate("segment", x = a.seg$x, xend = a.seg$xend, y = a.seg$y, yend = a.seg$yend)