关于numpy矩阵,我有一个非常普遍的问题:我试图根据线条对结果进行归一化,但是我得到了一些奇怪的白线。这是因为某些零被困在师的某个地方吗?
以下是代码:
import numpy as np
from matplotlib.pylab import *
def confusion_matrix(results,tagset):
# results : list of tuples (predicted, true)
# tagset : list of tags
np.seterr(divide='ignore', invalid='ignore')
mat = np.zeros((len(tagset),len(tagset)))
percent = [0,0]
for guessed,real in results :
mat[tagset.index(guessed),tagset.index(real)] +=1
if guessed == real :
percent[0] += 1
percent[1] += 1
else :
percent[1] += 1
mat /= mat.sum(axis=1)[:,np.newaxis]
matshow(mat,fignum=100)
xticks(arange(len(tagset)),tagset,rotation =90,size='x-small')
yticks(arange(len(tagset)),tagset,size='x-small')
colorbar()
show()
#print "\n".join(["\t".join([""]+tagset)]+["\t".join([tagset[i]]+[str(x) for x in
(mat[i,:])]) for i in xrange(mat.shape[1])])
return (percent[0] / float(percent[1]))*100
感谢您的时间! (我希望答案不是太明显)
答案 0 :(得分:2)
简而言之,您有一些标签,其中特定标签从未被猜到。因为您按照标记被猜测的次数进行了标准化,所以您有一行0/0
,这会产生np.nan
。默认情况下,matplotlib的颜色条将NaN
设置为没有填充颜色,导致轴的背景显示(默认情况下为白色)。
以下是重现当前问题的简单示例:
import numpy as np
import matplotlib.pyplot as plt
def main():
tags = ['A', 'B', 'C', 'D']
results = [('A', 'A'), ('B', 'B'), ('C', 'C'), ('A', 'D'), ('C', 'A'),
('B', 'B'), ('C', 'B')]
matrix = confusion_matrix(results, tags)
plot(matrix, tags)
plt.show()
def confusion_matrix(results, tagset):
output = np.zeros((len(tagset), len(tagset)), dtype=float)
for guessed, real in results:
output[tagset.index(guessed), tagset.index(real)] += 1
return output / output.sum(axis=1)[:, None]
def plot(matrix, tags):
fig, ax = plt.subplots()
im = ax.matshow(matrix)
cb = fig.colorbar(im)
cb.set_label('Percentage Correct')
ticks = range(len(tags))
ax.set(xlabel='True Label', ylabel='Predicted Label',
xticks=ticks, xticklabels=tags, yticks=ticks, yticklabels=tags)
ax.xaxis.set(label_position='top')
return fig
main()
如果我们看一下混淆矩阵:
array([[ 0.5 , 0. , 0. , 0.5 ],
[ 0. , 1. , 0. , 0. ],
[ 0.333, 0.333, 0.333, 0. ],
[ nan, nan, nan, nan]])
如果你想避免在永远不会猜到标签时出现问题,你可以做类似的事情:
def confusion_matrix(results, tagset):
output = np.zeros((len(tagset), len(tagset)), dtype=float)
for guessed, real in results:
output[tagset.index(guessed), tagset.index(real)] += 1
num_guessed = output.sum(axis=1)[:, None]
num_guessed[num_guessed == 0] = 1
return output / num_guessed
哪个收益率(其他一切都相同):
答案 1 :(得分:1)
不直接回答您的问题,但使用scikit-learn非常容易:
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
y_test=[2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 1]
y_pred = [2, 1, 0, 2, 0, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 0, 2, 2, 1, 0, 2]
cm = confusion_matrix(y_test, y_pred)
print(cm)
# Plot confusion matrix
plt.matshow(cm)
plt.title('Confusion matrix')
plt.colorbar() plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.show()
<强>输出:强>
[[13 0 0]
[ 0 15 1]
[ 0 0 9]]