import math, random, os, operator, matplotlib, matplotlib.pyplot
from string import split
def EuDist(vecA, vecB):
return math.sqrt(sum(map(lambda x: x * x, [i - j for i, j in zip(vecA, vecB)])))
filename = "points.txt"
FILE = open(filename, "w")
for i in range(33):
line = str(random.uniform(1, 2) + random.uniform(-1, 1)) + "\t" + str(random.uniform(4, 5) + random.uniform(-1, 1)) + "\n"
FILE.write(line)
for i in range(33):
line = str(random.uniform(4, 6) + random.uniform(-1, 1)) + "\t" + str(random.uniform(4, 6) + random.uniform(-1, 1)) + "\n"
FILE.write(line)
for i in range(34):
line = str(random.uniform(2, 3) + random.uniform(-1, 1)) + "\t" + str(random.uniform(2, 3) + random.uniform(-1, 1)) + "\n"
FILE.write(line)
FILE.close()
dataFile = open("points.txt")
dataset = []
for line in dataFile:
lineSplit = split(line[: -2], "\t")
dataset.append([float(value) for value in lineSplit])
maxIters = input("Enter the maximum number of iterations: ")
center = input("Enter a number of clusters: ")
centoids = random.sample(dataset, center)
m = len(dataset)
cluster = [[] for i in range(len(centoids))]
for i in range(maxIters):
cluster = [[] for v in range(len(centoids))]
for j in range(m):
minK = 0
minDis = 100
for k in range(len(centoids)):
if operator.le(EuDist(dataset[j], centoids[k]), minDis):
minDis = EuDist(dataset[j], centoids[k])
minK = k
cluster[minK].append(j)
for t in range(len(centoids)):
x0 = sum([dataset[x][0] for x in cluster[t]])
y0 = sum([dataset[x][1] for x in cluster[t]])
centoids[k] = [x0 / len(cluster[t]), y0 / len(cluster[t])]
matplotlib.pyplot.plot(hold = False)
colorarr=["b", "r", "y", "g", "p"]
for k in range(len(cluster)):
clusterPoint = [dataset[x] for x in cluster[k]]
x0 = [x[0] for x in clusterPoint]
y0 = [x[1] for x in clusterPoint]
center = [(x0, y0) for x in clusterPoint]
matplotlib.pyplot.show(centoids)
matplotlib.pyplot.hold(True)
matplotlib.pyplot.scatter(x0, y0, center, c = colorarr[k])
picname = "picture_number_" + str(i + 1) + ".png"
matplotlib.pyplot.savefig(picname)
代码工作正常,但我有问题。我不知道如何在此图上显示簇的质心。我知道我需要使用变量 centoids ,但我不确切知道如何。请给我一个提示。
答案 0 :(得分:0)
我并不是100%确定你想要什么,但我认为你只是想在这些集群的组合散点图上过度绘制集群的质心,所有这些都在一个图中(每个集群都有它自己的颜色。)
这些方面的东西可以起作用:
from matplotlib import pyplot as plt
import numpy as np
data = {
'x': np.random.rand(4, 100),
'y': np.random.rand(4, 100),
}
centoids = {
'x': np.random.rand(4),
'y': np.random.rand(4),
}
colorarr = ["b", "r", "y", "g"]
for i, cluster in enumerate(zip(data['x'], data['y'])):
plt.scatter(cluster[0], cluster[1], s=50, c=colorarr[i])
plt.grid(True)
plt.scatter(centoids['x'], centoids['y'], marker='+', color=colorarr, s=330)
plt.savefig("random.png")
只需使用此处显示的几条plt.
行;您不需要更多,当然也不需要hold
变量或show
。基本上,您只是在上一个群集的顶部过度绘制每个群集,最重要的是群集质心。
在上一个scatter
中,我已经为colorarr
关键字提供了完整的color
:这样,每个质心都会获得相应的群集颜色。
在您的代码中,它看起来像这样:
colorarr=["b", "r", "y", "g", "p"]
for k in range(len(cluster)):
clusterPoint = [dataset[x] for x in cluster[k]]
x0 = [x[0] for x in clusterPoint]
y0 = [x[1] for x in clusterPoint]
center = [(x0, y0) for x in clusterPoint]
matplotlib.pyplot.scatter(x0, y0, center, c = colorarr[k])
xcentoids, ycentoids = zip(*centoids)
matplotlib.pyplot.scatter(xcentoids, ycentoids, marker='+', color=colorarr, s=330)
picname = "picture_number_" + str(i + 1) + ".png"
matplotlib.pyplot.savefig(picname)