如果有更多实施经验的人会帮助我发现我当前代码中的逻辑缺陷,我会感激不尽。在过去的几个小时里,我一直坚持使用以下RK4函数的各种步长的实现和测试来解决Lotka-Volterra Differential equation。
我尽最大努力确保代码的可读性并注释掉关键步骤,因此下面的代码应该清楚。
import matplotlib.pyplot as plt
import numpy as np
def model(state,t):
"""
A function that creates an 1x2-array containing the Lotka Volterra Differential equation
Parameter assignement/convention:
a natural growth rate of the preys
b chance of being eaten by a predator
c dying rate of the predators per week
d chance of catching a prey
"""
x,y = state # will corresponding to initial conditions
# consider it as a vector too
a = 0.08
b = 0.002
c = 0.2
d = 0.0004
return np.array([ x*(a-b*y) , -y*(c - d*x) ]) # corresponds to [dx/dt, dy/dt]
def rk4( f, x0, t):
"""
4th order Runge-Kutta method implementation to solve x' = f(x,t) with x(t[0]) = x0.
INPUT:
f - function of x and t equal to dx/dt.
x0 - the initial condition(s).
Specifies the value of x @ t = t[0] (initial).
Can be a scalar or a vector (NumPy Array)
Example: [x0, y0] = [500, 20]
t - a time vector (array) at which the values of the solution are computed at.
t[0] is considered as the initial time point
the step size h is dependent on the time vector, choosing more points will
result in a smaller step size.
OUTPUT:
x - An array containing the solution evaluated at each point in the t array.
"""
n = len( t )
x = np.array( [ x0 ] * n ) # creating an array of length n
for i in xrange( n - 1 ):
h = t[i+1]- t[i] # step size, dependent on time vector
# starting below - the implementation of the RK4 algorithm:
# for further informations visit http://en.wikipedia.org/wiki/Runge-Kutta_methods
# k1 is the increment based on the slope at the beginning of the interval (same as Euler)
# k2 is the increment based on the slope at the midpoint of the interval
# k3 is AGAIN the increment based on the slope at the midpoint
# k4 is the increment based on the slope at the end of the interval
k1 = f( x[i], t[i] )
k2 = f( x[i] + 0.5 * h * k1, t[i] + 0.5 * h )
k3 = f( x[i] + 0.5 * h * k2, t[i] + 0.5 * h )
k4 = f( x[i] + h * k3, t[i] + h )
# finally computing the weighted average and storing it in the x-array
t[i+1] = t[i] + h
x[i+1] = x[i] + h * ( ( k1 + 2.0 * ( k2 + k3 ) + k4 ) / 6.0 )
return x
################################################################
# just the graphical output
# initial conditions for the system
x0 = 500
y0 = 20
# vector of times
t = np.linspace( 0, 200, 150 )
result = rk4( model,[x0,y0], t )
plt.plot(t,result)
plt.xlabel('Time')
plt.ylabel('Population Size')
plt.legend(('x (prey)','y (predator)'))
plt.title('Lotka-Volterra Model')
plt.show()
目前的输出看起来还不错。在一个小间隔然后去疯狂#39;。奇怪的是,当我选择更大的步长而不是小的步长时,代码似乎表现得更好,这表明我的实现必定是错误的,或者我的模型可能已关闭。我自己无法发现错误。
输出(错误):
这是所需的输出,可以通过使用Scipys集成模块之一轻松获得。请注意,在时间间隔[0,50]上,模拟似乎是正确的,然后每一步都会变得更糟。
答案 0 :(得分:2)
不幸的是,你遇到了我偶尔遇到的陷阱:你的初始x0
数组包含整数,因此,所有得到的x[i]
值将在计算后转换为整数。 / p>
为什么?因为int
是您初始条件的类型:
x0 = 500
y0 = 20
当然,解决方案是明确地使它们成为float
:
x0 = 500.
y0 = 20.
那么为什么scipy
在为它提供整数起始值时能正确执行?在开始实际计算之前,它可能会将它们转换为float
。例如,您可以这样做:
x = np.array( [ x0 ] * n, dtype=np.float)
然后你仍然可以安全地使用整数初始条件而没有问题。 至少在这种情况下,转换是在函数内完成一次性的,如果你再次使用它半年(或者,其他人使用它),你就不能再陷入陷阱了。