我试图导入一个看起来像这样的csv文件
Irrelevant row
"TIMESTAMP","RECORD","Site","Logger","Avg_70mSE_Avg","Avg_60mS_Avg",
"TS","RN","","","metres/second","metres/second",
"","","Smp","Smp","Avg","Avg",
"2010-05-18 12:30:00",0,"Sisters",5068,5.162,4.996
"2010-05-18 12:40:00",1,"Sisters",5068,5.683,5.571
第二行是标题,但第0行,第2行是无关紧要的。我的代码目前是:
parse = lambda x: datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
df = pd.read_csv('data.csv', header=1, index_col=['TIMESTAMP'],
parse_dates=['TIMESTAMP'], date_parser = parse)
问题在于,由于第2行和第3行没有正确的日期,我会收到错误(或者至少我认为这是错误)。
是否可以使用类似skiprows
的内容排除这些行,但是对于不在文件开头的行?或者您还有其他建议吗?
答案 0 :(得分:3)
您可以使用skiprows
关键字忽略行:
pd.read_csv('data.csv', skiprows=[0, 2, 3],
index_col=['TIMESTAMP'], parse_dates=['TIMESTAMP'])
您的样本数据给出了:
RECORD Site Logger Avg_70mSE_Avg Avg_60mS_Avg
TIMESTAMP
2010-05-18 12:30:00 0 Sisters 5068 5.162 4.996
2010-05-18 12:40:00 1 Sisters 5068 5.683 5.571
第一个解析的行(1
)成为标题,read_csv
的默认解析器正确解析时间戳列。