是否可以在matplotlib轴中嵌入更改数量的图?例如,inset_axes
方法用于将插入轴放置在父轴内:
但是,我有几行图,我想在每行的最后一个轴对象中包含一些插入轴。
fig, ax = plt.subplots(2,4, figsize=(15,15))
for i in range(2):
ax[i][0].plot(np.random.random(40))
ax[i][2].plot(np.random.random(40))
ax[i][3].plot(np.random.random(40))
# number of inset axes
number_inset = 5
for j in range(number_inset):
ax[i][4].plot(np.random.random(40))
在这里,我想要几个包含绘图的插入轴,而不是最后一列中绘制的5个绘图。像这样:
这样做的原因是每一行都指向要绘制的不同项目,而最后一列应该包含此类项目的组件。有没有办法在matplotlib中执行此操作,或者可能是另一种可视化的方法?
由于
答案 0 :(得分:2)
正如@hitzg所提到的,完成这样的事情最常见的方法是使用GridSpec
。 GridSpec
创建一个虚构的网格对象,您可以对其进行切片以生成子图。这是一种简单的方法来对齐您想要遵循常规网格的相当复杂的布局。
然而,在这种情况下,如何使用它可能不是很明显。您需要在GridSpec
列之前创建numrows * numinsets
行numcols
行,然后通过以numinsets
的间隔对其进行切片来创建“主”轴。
在下面的示例中(2行,4列,3个插图),我们将gs[:3, 0]
切片以获得左上角的“主”轴,gs[3:, 0]
以获得左下角“main” “轴,gs[:3, 1]
以获得下一个上轴等。对于插图,每个都是gs[i, -1]
。
作为一个完整的例子:
import numpy as np
import matplotlib.pyplot as plt
def build_axes_with_insets(numrows, numcols, numinsets, **kwargs):
"""
Makes a *numrows* x *numcols* grid of subplots with *numinsets* subplots
embedded as "sub-rows" in the last column of each row.
Returns a figure object and a *numrows* x *numcols* object ndarray where
all but the last column consists of axes objects, and the last column is a
*numinsets* length object ndarray of axes objects.
"""
fig = plt.figure(**kwargs)
gs = plt.GridSpec(numrows*numinsets, numcols)
axes = np.empty([numrows, numcols], dtype=object)
for i in range(numrows):
# Add "main" axes...
for j in range(numcols - 1):
axes[i, j] = fig.add_subplot(gs[i*numinsets:(i+1)*numinsets, j])
# Add inset axes...
for k in range(numinsets):
m = k + i * numinsets
axes[i, -1][k] = fig.add_subplot(gs[m, -1])
return fig, axes
def plot(axes):
"""Recursive plotting function just to put something on each axes."""
for ax in axes.flat:
data = np.random.normal(0, 1, 100).cumsum()
try:
ax.plot(data)
ax.set(xticklabels=[], yticklabels=[])
except AttributeError:
plot(ax)
fig, axes = build_axes_with_insets(2, 4, 3, figsize=(12, 6))
plot(axes)
fig.tight_layout()
plt.show()
答案 1 :(得分:1)
这是我在没有预先设置插图数量的情况下获得相同结果的方法。
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np
fig = plt.figure(figsize=(12,6))
nrows = 2
ncols = 4
# changing the shape of GridSpec's output
outer_grid = gridspec.GridSpec(nrows, ncols)
grid = []
for i in range(nrows*ncols):
grid.append(outer_grid[i])
outer_grid = np.array(grid).reshape(nrows,ncols)
for i in range(nrows):
inner_grid_1 = gridspec.GridSpecFromSubplotSpec(1, 1,
subplot_spec=outer_grid[i][0])
ax = plt.Subplot(fig, inner_grid_1[0])
ax.plot(np.random.normal(0,1,50).cumsum())
fig.add_subplot(ax)
inner_grid_2 = gridspec.GridSpecFromSubplotSpec(1, 1,
subplot_spec=outer_grid[i][1])
ax2 = plt.Subplot(fig, inner_grid_2[0])
ax2.plot(np.random.normal(0,1,50).cumsum())
fig.add_subplot(ax2)
inner_grid_3 = gridspec.GridSpecFromSubplotSpec(1, 1,
subplot_spec=outer_grid[i][2])
ax3 = plt.Subplot(fig, inner_grid_3[0])
ax3.plot(np.random.normal(0,1,50).cumsum())
fig.add_subplot(ax3)
# this value can be set based on some other calculation depending
# on each row
numinsets = 3
inner_grid_4 = gridspec.GridSpecFromSubplotSpec(numinsets, 1,
subplot_spec=outer_grid[i][3])
# Adding subplots to the last inner grid
for j in range(inner_grid_4.get_geometry()[0]):
ax4 = plt.Subplot(fig, inner_grid_4[j])
ax4.plot(np.random.normal(0,1,50).cumsum())
fig.add_subplot(ax4)
# Removing labels
for ax in fig.axes:
ax.set(xticklabels=[], yticklabels=[])
fig.tight_layout()