如何为lucene添加多个AND布尔查询

时间:2014-12-29 03:27:09

标签: c# lucene lucene.net

我有1000万个lucene文件,看起来像这样:

{
     "0": 230,
     "1": 12,
     "2": 611,
     "3": 800
}

我试图找到所有文件,所有字段都小于10.这是我的lucene代码:

BooleanQuery bq = new BooleanQuery();
bq.Add(NumericRangeQuery.NewIntRange("0", 1, 10, true, true), Occur.MUST);
bq.Add(NumericRangeQuery.NewIntRange("1", 1, 10 , true, true), Occur.MUST);
bq.Add(NumericRangeQuery.NewIntRange("2", 1, 10, true, true), Occur.MUST);
//bq.Add(NumericRangeQuery.NewIntRange("3", 1, 1000, true, true), Occur.MUST);

TopDocs hits = searcher.Search(bq, 10);
int counter = 0;
foreach (ScoreDoc scoreDoc in hits.ScoreDocs)
{

   Lucene.Net.Documents.Document doc = searcher.Doc(scoreDoc.Doc);
   Console.WriteLine("3: " + doc.Get("3"));
   counter++;
}

我遇到的问题是,当我检查所有4个属性以查看是否所有4个属性都在1到10之间时,我没有得到任何结果。当我检查前3个属性时,我得到了正确的结果。但是,当我添加第四个时,我什么也得不到。正如您所看到的那样,第四个布尔子句被注释掉了,因为它不会产生任何结果。我甚至在1到1000之间的整个范围内进行了第四次财产检查,但我仍然没有结果。难道我做错了什么?以下是我构建索引的方法。

public static void BuildIndex()
{
    Directory directory = FSDirectory.Open(new System.IO.DirectoryInfo("C:\\Users\\Luke\\Desktop\\1"));
    Analyzer analyzer = new Lucene.Net.Analysis.Standard.StandardAnalyzer(Lucene.Net.Util.Version.LUCENE_30);
    IndexWriter writer = new IndexWriter(directory, analyzer, new IndexWriter.MaxFieldLength(100000));


    for (int x = 0; x < 10000000; x++)
    {
        Document doc = new Document();
        doc.Add(new NumericField("id", 100000, Field.Store.YES, true).SetIntValue(x));
        for (int i = 0; i < 5; i++)
        {
            doc.Add(new NumericField(i.ToString(), 100000, Field.Store.YES, true).SetIntValue(rand.Next(1, 1000)));
        }

        writer.AddDocument(doc);
        if (x % 500 == 0)
        {
            Console.WriteLine(x);
        }
    }

    writer.Optimize();
    writer.Flush(true, true, true);
    writer.Dispose();
    directory.Dispose();

    Console.WriteLine("done");
    Console.Read();
}

1 个答案:

答案 0 :(得分:5)

我刚刚在Java Lucene(4.4)中重新创建了这个程序,我在数值范围查询中没有看到任何问题。

1)3份文件

field:0 - value:137
field:1 - value:41
field:2 - value:908
field:3 - value:871
field:4 - value:686

field:0 - value:598
field:1 - value:623
field:2 - value:527
field:3 - value:364
field:4 - value:800

field:0 - value:96
field:1 - value:301
field:2 - value:323
field:3 - value:94
field:4 - value:653

2)索引器

package com.numericrange;

import java.io.File;
import java.io.IOException;

import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.IntField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexWriterConfig.OpenMode;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

public class IndexBuilder
{

    /**
     * @param args
     * @throws IOException 
     */
    public static void main(String[] args) throws IOException
    {
        Directory dir = FSDirectory.open(new File("/Users/Lucene/indexes"));
        IndexWriterConfig iwc = new IndexWriterConfig(Version.LUCENE_44, new StandardAnalyzer(Version.LUCENE_44));
        iwc.setOpenMode(OpenMode.CREATE);
        IndexWriter writer = new IndexWriter(dir, iwc);

        for (int x = 0; x < 3; x++)
        {
            Document doc = new Document();
            IntField iFldOut = new IntField("id", 6, Field.Store.YES);
            iFldOut.setIntValue(x);
            doc.add(iFldOut);
            for (int i = 0; i < 5; i++)
            {
                int randomVal = (int)(Math.random() * 1000) + 1;
                IntField iFld = new IntField(Integer.toString(i), 6, Field.Store.YES);
                iFld.setIntValue(randomVal);
                doc.add(iFld);
                System.out.println("i:" + i + " - Random Value:" + randomVal);
            }

            writer.addDocument(doc);

        }
        int newNumDocs = writer.numDocs();
        System.out.println("************************");
        System.out.println(newNumDocs + " documents added.");
        System.out.println("************************");

        writer.close();
    }

}

3)搜索

package com.numericrange;

import java.io.File;
import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.search.BooleanClause.Occur;
import org.apache.lucene.search.BooleanQuery;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.NumericRangeQuery;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopScoreDocCollector;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.util.Version;

public class NumericQueryDemo
{

    public static void main(String[] args) throws IOException, Exception
    {
        // Use Indexes from existing folder
        String dirPath = "/Users/Lucene/indexes";
        IndexReader reader = DirectoryReader.open(FSDirectory.open(new File(dirPath)));
        IndexSearcher searcher = new IndexSearcher(reader);

        Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_44);

        BooleanQuery bq = new BooleanQuery();
        bq.add(NumericRangeQuery.newIntRange("0", 100, 600, true, true), Occur.MUST);
        bq.add(NumericRangeQuery.newIntRange("1", 40, 700, true, true), Occur.MUST);
        bq.add(NumericRangeQuery.newIntRange("2", 500, 1000, true, true), Occur.MUST);
        bq.add(NumericRangeQuery.newIntRange("3", 300, 900, true, true), Occur.MUST);
        bq.add(NumericRangeQuery.newIntRange("4", 600, 800, true, true), Occur.MUST);
        System.out.println("Query Data:" + bq.toString());

        TopScoreDocCollector collector = TopScoreDocCollector.create(500, true);
        long startTime = System.currentTimeMillis();
        searcher.search(bq, collector);
        System.out.println("Search Time: "+(System.currentTimeMillis() - startTime)+"ms");

        // Display Results
        ScoreDoc[] hits = collector.topDocs().scoreDocs;
        System.out.println("Found " + hits.length + " hits.");
        for(int i=0; i < hits.length; ++i) 
        {
            int docId = hits[i].doc;
            Document d = searcher.doc(docId);
            System.out.println((i + 1) + ". " + hits[i].score + " "+ d.get("id") + " ==== " + d.get("0") +
                    " ==== " + d.get("1") + " ==== " + d.get("2") + " ==== " + d.get("3") + " ==== " + d.get("4"));
        }
    }

}

4)搜索结果

Query Data:+0:[100 TO 600] +1:[40 TO 700] +2:[500 TO 1000] +3:[300 TO 900] +4:[600 TO 800]
Search Time: 27ms
Found 2 hits.
1. 2.236068 0 ==== 137 ==== 41 ==== 908 ==== 871 ==== 686
2. 2.236068 1 ==== 598 ==== 623 ==== 527 ==== 364 ==== 800

正如您所看到的,我将precisionStep值用作'6'。 我验证了文件通过Luke正确编入索引,并通过Luke解雇了相同的查询。

您可以尝试通过Luke界面触发查询吗?根据您的文档更改值。

+0:[100至600] +1:[40至700] +2:[500至1000] +3:[300至900] +4:[600至800]