我只是想弄清楚这些结果背后的逻辑:
>>>nan = float('nan')
>>>nan == nan
False
# I understand that this is because the __eq__ method is defined this way
>>>nan in [nan]
True
# This is because the __contains__ method for list is defined to compare the identity first then the content?
但在这两种情况下,我认为在幕后的函数PyObject_RichCompareBool
被称为正确?为什么会有区别?他们不应该有相同的行为吗?
答案 0 :(得分:6)
但在这两种情况下我都认为幕后功能
PyObject_RichCompareBool
被称为对吗?为什么会有区别? 他们不应该有相同的行为吗?
==
从不直接在float对象上调用PyObject_RichCompareBool
,浮点数有自己的rich_compare
方法(调用__eq__
),可能会调用PyObject_RichCompareBool
也可能不调用 /* Comparison is pretty much a nightmare. When comparing float to float,
* we do it as straightforwardly (and long-windedly) as conceivable, so
* that, e.g., Python x == y delivers the same result as the platform
* C x == y when x and/or y is a NaN.
* When mixing float with an integer type, there's no good *uniform* approach.
* Converting the double to an integer obviously doesn't work, since we
* may lose info from fractional bits. Converting the integer to a double
* also has two failure modes: (1) a long int may trigger overflow (too
* large to fit in the dynamic range of a C double); (2) even a C long may have
* more bits than fit in a C double (e.g., on a a 64-bit box long may have
* 63 bits of precision, but a C double probably has only 53), and then
* we can falsely claim equality when low-order integer bits are lost by
* coercion to double. So this part is painful too.
*/
static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{
double i, j;
int r = 0;
assert(PyFloat_Check(v));
i = PyFloat_AS_DOUBLE(v);
/* Switch on the type of w. Set i and j to doubles to be compared,
* and op to the richcomp to use.
*/
if (PyFloat_Check(w))
j = PyFloat_AS_DOUBLE(w);
else if (!Py_IS_FINITE(i)) {
if (PyInt_Check(w) || PyLong_Check(w))
/* If i is an infinity, its magnitude exceeds any
* finite integer, so it doesn't matter which int we
* compare i with. If i is a NaN, similarly.
*/
j = 0.0;
else
goto Unimplemented;
}
...
取决于传递给它的参数。
PyObject_RichCompareBool
另一方面,list_contains
直接调用项目__eq__
,因此在第二种情况下你会得到True。
请注意,这仅适用于CPython,PyPy的list.__contains__
方法似乎只是通过调用$~/pypy-2.4.0-linux64/bin# ./pypy
Python 2.7.8 (f5dcc2477b97, Sep 18 2014, 11:33:30)
[PyPy 2.4.0 with GCC 4.6.3] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>>> nan = float('nan')
>>>> nan == nan
False
>>>> nan is nan
True
>>>> nan in [nan]
False
方法来比较项目:
{{1}}
答案 1 :(得分:1)
您说PyObject_RichCompareBool
被调用是对的,请参阅list_contains
中的listobject.c
函数。
文档说:
这相当于Python表达式o1 op o2,其中op是对应于opid的运算符。
然而,这似乎并不完全正确。
在cpython源代码中我们有这一部分:
int
PyObject_RichCompareBool(PyObject *v, PyObject *w, int op)
{
PyObject *res;
int ok;
/* Quick result when objects are the same.
Guarantees that identity implies equality. */
if (v == w) {
if (op == Py_EQ)
return 1;
else if (op == Py_NE)
return 0;
}
在这种情况下,由于对象是相同的,我们有平等。
答案 2 :(得分:0)
在数学上,将无穷大与无穷大相比较并不会产生sense。这就是为什么没有为nan
定义平等的原因。
对于nan in [nan]
的情况,引用了不可变变量。但要小心::
>>> nan is nan
True
>>> float('nan') is float('nan')
False
在第一种情况下,引用了不可变变量。在第二个中,创建并比较了两个不同的浮点数。