在Python中获取当前系统状态(当前CPU,RAM,可用磁盘空间等)的首选方法是什么? * nix和Windows平台的奖励积分。
似乎有一些可能的方法从我的搜索中提取它:
使用PSI等库(目前似乎没有在多个平台上积极开发和支持)或类似pystatgrab之类的内容(自2007年以来,似乎没有活动似乎也没有支持窗口)。
使用特定于平台的代码,例如* {nix系统使用os.popen("ps")
或类似代码,MEMORYSTATUS
使用ctypes.windll.kernel32
(请参阅this recipe on ActiveState)获取Windows平台。可以将Python类与所有这些代码片段放在一起。
这些方法并不是很糟糕,但是已经有了一个支持良好的多平台方式来做同样的事情吗?
答案 0 :(得分:324)
The psutil library将在各种平台上为您提供一些系统信息(CPU /内存使用情况):
psutil是一个模块,提供了一个接口,用于通过使用Python以可移植的方式检索有关正在运行的进程和系统利用率(CPU,内存)的信息,实现ps,top和Windows任务管理器等工具提供的许多功能。
目前支持Linux,Windows,OSX,Sun Solaris,FreeBSD,OpenBSD和NetBSD,32位和64位架构,Python版本从2.6到3.5(Python 2.4和2.5的用户可以使用2.1.3)版本)。
更新:以下是psutil
的一些示例用法:
#!/usr/bin/env python
import psutil
# gives a single float value
psutil.cpu_percent()
# gives an object with many fields
psutil.virtual_memory()
# you can convert that object to a dictionary
dict(psutil.virtual_memory()._asdict())
答案 1 :(得分:52)
使用psutil library。在Ubuntu 18.04上,从1-30-2019开始,pip安装了5.5.0(最新版本)。较旧的版本可能会有所不同。 您可以在Python中检查您的psutil版本:
from __future__ import print_function # for Python2
import psutil
print(psutil.__version__)
获取一些内存和CPU统计信息:
from __future__ import print_function
import psutil
print(psutil.cpu_percent())
print(psutil.virtual_memory()) # physical memory usage
print('memory % used:', psutil.virtual_memory()[2])
virtual_memory
(元组)将具有系统范围内使用的百分比内存。在Ubuntu 18.04上,我似乎高估了几个百分点。
您还可以获取当前Python实例使用的内存:
import os
import psutil
pid = os.getpid()
py = psutil.Process(pid)
memoryUse = py.memory_info()[0]/2.**30 # memory use in GB...I think
print('memory use:', memoryUse)
它给出了Python脚本的当前内存使用。
pypi page for psutil还有一些更深入的例子。
答案 2 :(得分:22)
仅适用于Linux: 仅使用stdlib依赖的RAM使用的单线程:
import os
tot_m, used_m, free_m = map(int, os.popen('free -t -m').readlines()[-1].split()[1:])
编辑:指定的解决方案操作系统依赖
答案 3 :(得分:20)
下面的代码,没有外部库为我工作。我在Python 2.7.9上进行了测试
CPU使用率
import os
CPU_Pct=str(round(float(os.popen('''grep 'cpu ' /proc/stat | awk '{usage=($2+$4)*100/($2+$4+$5)} END {print usage }' ''').readline()),2))
#print results
print("CPU Usage = " + CPU_Pct)
和Ram使用,总计,使用和免费
import os
mem=str(os.popen('free -t -m').readlines())
"""
Get a whole line of memory output, it will be something like below
[' total used free shared buffers cached\n',
'Mem: 925 591 334 14 30 355\n',
'-/+ buffers/cache: 205 719\n',
'Swap: 99 0 99\n',
'Total: 1025 591 434\n']
So, we need total memory, usage and free memory.
We should find the index of capital T which is unique at this string
"""
T_ind=mem.index('T')
"""
Than, we can recreate the string with this information. After T we have,
"Total: " which has 14 characters, so we can start from index of T +14
and last 4 characters are also not necessary.
We can create a new sub-string using this information
"""
mem_G=mem[T_ind+14:-4]
"""
The result will be like
1025 603 422
we need to find first index of the first space, and we can start our substring
from from 0 to this index number, this will give us the string of total memory
"""
S1_ind=mem_G.index(' ')
mem_T=mem_G[0:S1_ind]
"""
Similarly we will create a new sub-string, which will start at the second value.
The resulting string will be like
603 422
Again, we should find the index of first space and than the
take the Used Memory and Free memory.
"""
mem_G1=mem_G[S1_ind+8:]
S2_ind=mem_G1.index(' ')
mem_U=mem_G1[0:S2_ind]
mem_F=mem_G1[S2_ind+8:]
print 'Summary = ' + mem_G
print 'Total Memory = ' + mem_T +' MB'
print 'Used Memory = ' + mem_U +' MB'
print 'Free Memory = ' + mem_F +' MB'
答案 4 :(得分:10)
这是我刚才放在一起的东西,它只是窗户,但可以帮助你获得所需的一部分。
来自: “for sys available mem” http://msdn2.microsoft.com/en-us/library/aa455130.aspx
“个别进程信息和python脚本示例” http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true
注意:WMI界面/进程也可用于执行类似任务 我在这里没有使用它,因为当前的方法满足了我的需求,但是如果有一天需要扩展或改进它,那么可能需要调查WMI工具。
python的WMI:
http://tgolden.sc.sabren.com/python/wmi.html
代码:
'''
Monitor window processes
derived from:
>for sys available mem
http://msdn2.microsoft.com/en-us/library/aa455130.aspx
> individual process information and python script examples
http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true
NOTE: the WMI interface/process is also available for performing similar tasks
I'm not using it here because the current method covers my needs, but if someday it's needed
to extend or improve this module, then may want to investigate the WMI tools available.
WMI for python:
http://tgolden.sc.sabren.com/python/wmi.html
'''
__revision__ = 3
import win32com.client
from ctypes import *
from ctypes.wintypes import *
import pythoncom
import pywintypes
import datetime
class MEMORYSTATUS(Structure):
_fields_ = [
('dwLength', DWORD),
('dwMemoryLoad', DWORD),
('dwTotalPhys', DWORD),
('dwAvailPhys', DWORD),
('dwTotalPageFile', DWORD),
('dwAvailPageFile', DWORD),
('dwTotalVirtual', DWORD),
('dwAvailVirtual', DWORD),
]
def winmem():
x = MEMORYSTATUS() # create the structure
windll.kernel32.GlobalMemoryStatus(byref(x)) # from cytypes.wintypes
return x
class process_stats:
'''process_stats is able to provide counters of (all?) the items available in perfmon.
Refer to the self.supported_types keys for the currently supported 'Performance Objects'
To add logging support for other data you can derive the necessary data from perfmon:
---------
perfmon can be run from windows 'run' menu by entering 'perfmon' and enter.
Clicking on the '+' will open the 'add counters' menu,
From the 'Add Counters' dialog, the 'Performance object' is the self.support_types key.
--> Where spaces are removed and symbols are entered as text (Ex. # == Number, % == Percent)
For the items you wish to log add the proper attribute name in the list in the self.supported_types dictionary,
keyed by the 'Performance Object' name as mentioned above.
---------
NOTE: The 'NETFramework_NETCLRMemory' key does not seem to log dotnet 2.0 properly.
Initially the python implementation was derived from:
http://www.microsoft.com/technet/scriptcenter/scripts/default.mspx?mfr=true
'''
def __init__(self,process_name_list=[],perf_object_list=[],filter_list=[]):
'''process_names_list == the list of all processes to log (if empty log all)
perf_object_list == list of process counters to log
filter_list == list of text to filter
print_results == boolean, output to stdout
'''
pythoncom.CoInitialize() # Needed when run by the same process in a thread
self.process_name_list = process_name_list
self.perf_object_list = perf_object_list
self.filter_list = filter_list
self.win32_perf_base = 'Win32_PerfFormattedData_'
# Define new datatypes here!
self.supported_types = {
'NETFramework_NETCLRMemory': [
'Name',
'NumberTotalCommittedBytes',
'NumberTotalReservedBytes',
'NumberInducedGC',
'NumberGen0Collections',
'NumberGen1Collections',
'NumberGen2Collections',
'PromotedMemoryFromGen0',
'PromotedMemoryFromGen1',
'PercentTimeInGC',
'LargeObjectHeapSize'
],
'PerfProc_Process': [
'Name',
'PrivateBytes',
'ElapsedTime',
'IDProcess',# pid
'Caption',
'CreatingProcessID',
'Description',
'IODataBytesPersec',
'IODataOperationsPersec',
'IOOtherBytesPersec',
'IOOtherOperationsPersec',
'IOReadBytesPersec',
'IOReadOperationsPersec',
'IOWriteBytesPersec',
'IOWriteOperationsPersec'
]
}
def get_pid_stats(self, pid):
this_proc_dict = {}
pythoncom.CoInitialize() # Needed when run by the same process in a thread
if not self.perf_object_list:
perf_object_list = self.supported_types.keys()
for counter_type in perf_object_list:
strComputer = "."
objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")
query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread
if len(colItems) > 0:
for objItem in colItems:
if hasattr(objItem, 'IDProcess') and pid == objItem.IDProcess:
for attribute in self.supported_types[counter_type]:
eval_str = 'objItem.%s' % (attribute)
this_proc_dict[attribute] = eval(eval_str)
this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
break
return this_proc_dict
def get_stats(self):
'''
Show process stats for all processes in given list, if none given return all processes
If filter list is defined return only the items that match or contained in the list
Returns a list of result dictionaries
'''
pythoncom.CoInitialize() # Needed when run by the same process in a thread
proc_results_list = []
if not self.perf_object_list:
perf_object_list = self.supported_types.keys()
for counter_type in perf_object_list:
strComputer = "."
objWMIService = win32com.client.Dispatch("WbemScripting.SWbemLocator")
objSWbemServices = objWMIService.ConnectServer(strComputer,"root\cimv2")
query_str = '''Select * from %s%s''' % (self.win32_perf_base,counter_type)
colItems = objSWbemServices.ExecQuery(query_str) # "Select * from Win32_PerfFormattedData_PerfProc_Process")# changed from Win32_Thread
try:
if len(colItems) > 0:
for objItem in colItems:
found_flag = False
this_proc_dict = {}
if not self.process_name_list:
found_flag = True
else:
# Check if process name is in the process name list, allow print if it is
for proc_name in self.process_name_list:
obj_name = objItem.Name
if proc_name.lower() in obj_name.lower(): # will log if contains name
found_flag = True
break
if found_flag:
for attribute in self.supported_types[counter_type]:
eval_str = 'objItem.%s' % (attribute)
this_proc_dict[attribute] = eval(eval_str)
this_proc_dict['TimeStamp'] = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.') + str(datetime.datetime.now().microsecond)[:3]
proc_results_list.append(this_proc_dict)
except pywintypes.com_error, err_msg:
# Ignore and continue (proc_mem_logger calls this function once per second)
continue
return proc_results_list
def get_sys_stats():
''' Returns a dictionary of the system stats'''
pythoncom.CoInitialize() # Needed when run by the same process in a thread
x = winmem()
sys_dict = {
'dwAvailPhys': x.dwAvailPhys,
'dwAvailVirtual':x.dwAvailVirtual
}
return sys_dict
if __name__ == '__main__':
# This area used for testing only
sys_dict = get_sys_stats()
stats_processor = process_stats(process_name_list=['process2watch'],perf_object_list=[],filter_list=[])
proc_results = stats_processor.get_stats()
for result_dict in proc_results:
print result_dict
import os
this_pid = os.getpid()
this_proc_results = stats_processor.get_pid_stats(this_pid)
print 'this proc results:'
print this_proc_results
http://monkut.webfactional.com/blog/archive/2009/1/21/windows-process-memory-logging-python
答案 5 :(得分:7)
要获得程序的逐行记录和时间分析,建议使用memory_profiler
和line_profiler
。
安装:
# Time profiler
$ pip install line_profiler
# Memory profiler
$ pip install memory_profiler
# Install the dependency for a faster analysis
$ pip install psutil
最常见的部分是,您可以使用相应的修饰符指定要分析的函数。
示例:我的Python文件main.py
中有多个函数要分析。其中之一是linearRegressionfit()
。我需要使用装饰器@profile
,该装饰器可以帮助我针对时间和内存这两个方面来分析代码。
对函数定义进行以下更改
@profile
def linearRegressionfit(Xt,Yt,Xts,Yts):
lr=LinearRegression()
model=lr.fit(Xt,Yt)
predict=lr.predict(Xts)
# More Code
对于时间分析,
运行:
$ kernprof -l -v main.py
输出
Total time: 0.181071 s
File: main.py
Function: linearRegressionfit at line 35
Line # Hits Time Per Hit % Time Line Contents
==============================================================
35 @profile
36 def linearRegressionfit(Xt,Yt,Xts,Yts):
37 1 52.0 52.0 0.1 lr=LinearRegression()
38 1 28942.0 28942.0 75.2 model=lr.fit(Xt,Yt)
39 1 1347.0 1347.0 3.5 predict=lr.predict(Xts)
40
41 1 4924.0 4924.0 12.8 print("train Accuracy",lr.score(Xt,Yt))
42 1 3242.0 3242.0 8.4 print("test Accuracy",lr.score(Xts,Yts))
对于内存分析,
运行:
$ python -m memory_profiler main.py
输出
Filename: main.py
Line # Mem usage Increment Line Contents
================================================
35 125.992 MiB 125.992 MiB @profile
36 def linearRegressionfit(Xt,Yt,Xts,Yts):
37 125.992 MiB 0.000 MiB lr=LinearRegression()
38 130.547 MiB 4.555 MiB model=lr.fit(Xt,Yt)
39 130.547 MiB 0.000 MiB predict=lr.predict(Xts)
40
41 130.547 MiB 0.000 MiB print("train Accuracy",lr.score(Xt,Yt))
42 130.547 MiB 0.000 MiB print("test Accuracy",lr.score(Xts,Yts))
此外,还可以使用matplotlib
使用
$ mprof run main.py
$ mprof plot
line_profiler
版本== 3.0.2
memory_profiler
版本== 0.57.0
psutil
版本== 5.7.0
编辑:可以使用TAMPPA包来分析探查器的结果。使用它,我们可以逐行获得所需的图
答案 6 :(得分:3)
“...当前系统状态(当前CPU,RAM,可用磁盘空间等)”和“* nix和Windows平台”可能是一个难以实现的组合。
操作系统在管理这些资源的方式上有根本的不同。实际上,它们在核心概念方面存在差异,例如定义什么算作系统,什么算作应用时间。
“可用磁盘空间”?什么算作“磁盘空间?”所有设备的所有分区?多引导环境中的外部分区怎么样?
我认为Windows和* nix之间没有明确的共识可以实现这一点。实际上,在称为Windows的各种操作系统之间甚至可能没有任何共识。是否有一个适用于XP和Vista的Windows API?
答案 7 :(得分:3)
我觉得这些答案是为Python 2编写的,无论如何没有人提到可用于Python 3的标准resource
包。它提供了获取资源限制的命令给定进程的>(默认情况下调用Python进程)。这与整个系统获取当前资源的用途不同,但它可以解决一些相同的问题,例如: “我想确保我只在这个脚本中使用X很多RAM。”
答案 8 :(得分:2)
我们选择使用常规信息源,因为我们可以发现空闲内存中的瞬时波动,并认为查询 meminfo 数据源很有帮助。这也帮助我们获得了一些预先准备好的相关参数。
代码
import os
linux_filepath = '/proc/meminfo'
meminfo = dict((i.split()[0].rstrip(':'), int(i.split()[1]))
for i in open(linux_filepath).readlines())
meta['memory_total_gb'] = meminfo['MemTotal'] / (2**20)
meta['memory_free_gb'] = meminfo['MemFree'] / (2**20)
meta['memory_available_gb'] = meminfo['MemAvailable'] / (2**20)
供参考的输出(我们删除了所有换行符以进行进一步分析)
存储器总数:1014500 kB存储器空闲:562680 kB存储器可用:646364 kB 缓冲区:15144 kB缓存:210720 kB交换缓存:0 kB活动:261476 kB 非活动中:128888 kB活动中(匿名):167092 kB非活动中(匿名):20888 kB 活动的(文件):94384 kB不活动的(文件):108000 kB无法显示的:3652 kB 锁定:3652 kB交换总计:0 kB交换免费:0 kB脏污:0 kB写回: 0 kB AnonPages:168160 kB Mapped:81352 kB Shmem:21060 kB Slab:34492 可回收的kB:18044 kB不可回收的:16448 kB内核堆栈:2672 kB PageTables:8180 kB NFS_Unstable:0 kB跳动:0 kB WritebackTmp:0 kB CommitLimit:507248 kB Committed_AS:1038756 kB Vmalloc总计: 34359738367 kB Vmalloc已使用:0 kB VmallocChunk:0 kB硬件损坏: 0 kB AnonHuge页数:88064 kB Cma总计:0 kB CmaFree:0 kB HugePages_Total:0 HugePages_Free:0 HugePages_Rsvd:0 HugePages_Surp: 0大页面大小:2048 kB DirectMap4k:43008 kB DirectMap2M:1005568 kB
答案 9 :(得分:2)
此脚本用于CPU使用率:
import os
def get_cpu_load():
""" Returns a list CPU Loads"""
result = []
cmd = "WMIC CPU GET LoadPercentage "
response = os.popen(cmd + ' 2>&1','r').read().strip().split("\r\n")
for load in response[1:]:
result.append(int(load))
return result
if __name__ == '__main__':
print get_cpu_load()
答案 10 :(得分:1)
有关CPU的详细信息,请使用 psutil 库
对于RAM频率(以MHz为单位),请使用内置的Linux库 dmidecode 并稍微控制输出;)。此命令需要root权限,因此也要提供密码。只需复制以下命令,将 mypass 替换为您的密码
import os
os.system("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2")
-------------------输出---------------------------
1600 MT /秒
未知
1600 MT /秒
未知0
[i for i in os.popen("echo mypass | sudo -S dmidecode -t memory | grep 'Clock Speed' | cut -d ':' -f2").read().split(' ') if i.isdigit()]
--------------------------输出-------------------- -----
['1600','1600']
答案 11 :(得分:1)
从第一反应中获取反馈并做了一些小改动
#!/usr/bin/env python
#Execute commond on windows machine to install psutil>>>>python -m pip install psutil
import psutil
print (' ')
print ('----------------------CPU Information summary----------------------')
print (' ')
# gives a single float value
vcc=psutil.cpu_count()
print ('Total number of CPUs :',vcc)
vcpu=psutil.cpu_percent()
print ('Total CPUs utilized percentage :',vcpu,'%')
print (' ')
print ('----------------------RAM Information summary----------------------')
print (' ')
# you can convert that object to a dictionary
#print(dict(psutil.virtual_memory()._asdict()))
# gives an object with many fields
vvm=psutil.virtual_memory()
x=dict(psutil.virtual_memory()._asdict())
def forloop():
for i in x:
print (i,"--",x[i]/1024/1024/1024)#Output will be printed in GBs
forloop()
print (' ')
print ('----------------------RAM Utilization summary----------------------')
print (' ')
# you can have the percentage of used RAM
print('Percentage of used RAM :',psutil.virtual_memory().percent,'%')
#79.2
# you can calculate percentage of available memory
print('Percentage of available RAM :',psutil.virtual_memory().available * 100 / psutil.virtual_memory().total,'%')
#20.8
答案 12 :(得分:0)
基于@Hrabal的cpu用法代码,这是我使用的:
from subprocess import Popen, PIPE
def get_cpu_usage():
''' Get CPU usage on Linux by reading /proc/stat '''
sub = Popen(('grep', 'cpu', '/proc/stat'), stdout=PIPE, stderr=PIPE)
top_vals = [int(val) for val in sub.communicate()[0].split('\n')[0].split[1:5]]
return (top_vals[0] + top_vals[2]) * 100. /(top_vals[0] + top_vals[2] + top_vals[3])
答案 13 :(得分:0)
您可以在子进程中使用psutil或psmem 示例代码
import subprocess
cmd = subprocess.Popen(['sudo','./ps_mem'],stdout=subprocess.PIPE,stderr=subprocess.PIPE)
out,error = cmd.communicate()
memory = out.splitlines()
参考http://techarena51.com/index.php/how-to-install-python-3-and-flask-on-linux/
答案 14 :(得分:0)
您可以阅读/ proc / meminfo以获得已用的内存
file1 = open('/proc/meminfo', 'r')
for line in file1:
if 'MemTotal' in line:
x = line.split()
memTotal = int(x[1])
if 'Buffers' in line:
x = line.split()
buffers = int(x[1])
if 'Cached' in line and 'SwapCached' not in line:
x = line.split()
cached = int(x[1])
if 'MemFree' in line:
x = line.split()
memFree = int(x[1])
file1.close()
percentage_used = int ( ( memTotal - (buffers + cached + memFree) ) / memTotal * 100 )
print(percentage_used)
答案 15 :(得分:0)
这汇总了所有优点:
psutil
+ os
获得Unix和Windows兼容性:
这样我们就可以得到:
代码:
import os
import psutil # need: pip install psutil
In [32]: psutil.virtual_memory()
Out[32]: svmem(total=6247907328, available=2502328320, percent=59.9, used=3327135744, free=167067648, active=3671199744, inactive=1662668800, buffers=844783616, cached=1908920320, shared=123912192, slab=613048320)
In [33]: psutil.virtual_memory().percent
Out[33]: 60.0
In [34]: psutil.cpu_percent()
Out[34]: 5.5
In [35]: os.sep
Out[35]: '/'
In [36]: psutil.disk_usage(os.sep)
Out[36]: sdiskusage(total=50190790656, used=41343860736, free=6467502080, percent=86.5)
In [37]: psutil.disk_usage(os.sep).percent
Out[37]: 86.5
答案 16 :(得分:0)
用crontab运行不会打印pid
设置:*/1 * * * * sh dog.sh
这一行在 crontab -e
import os
import re
CUT_OFF = 90
def get_cpu_load():
cmd = "ps -Ao user,uid,comm,pid,pcpu --sort=-pcpu | head -n 2 | tail -1"
response = os.popen(cmd, 'r').read()
arr = re.findall(r'\S+', response)
print(arr)
needKill = float(arr[-1]) > CUT_OFF
if needKill:
r = os.popen(f"kill -9 {arr[-2]}")
print('kill:', r)
if __name__ == '__main__':
# Test CPU with
# $ stress --cpu 1
# crontab -e
# Every 1 min
# */1 * * * * sh dog.sh
# ctlr o, ctlr x
# crontab -l
print(get_cpu_load())
答案 17 :(得分:-6)
我不相信有一个支持良好的多平台库。请记住,Python本身是用C语言编写的,因此任何库都可以根据您的建议,明确地决定运行哪个特定于操作系统的代码片段。