问题
您好,我正在使用加速库创建一个应用程序,允许用户以交互方式调用处理图像的函数,这就是我使用ghc api进行扩展和扩展ghci的原因。
问题是当从shell运行已编译的可执行文件时,计算在100ms(略小于80)下完成,而在ghci中运行相同的编译代码则需要超过100ms(平均大于140)光洁度。
资源
示例代码+执行日志: https://gist.github.com/zgredzik/15a437c87d3d8d03b8fc
描述
首先:测试是在编译CUDA内核之后运行的(编译本身又增加了2秒,但事实并非如此)。
从shell运行已编译的可执行文件时,计算在10ms内完成。 (shell first run
和second shell run
传递了不同的参数,以确保数据不会缓存在任何地方。)
当尝试从ghci运行相同的代码并摆弄输入数据时,计算时间超过100毫秒。我理解解释的代码比编译的代码慢,但是我在ghci会话中加载相同的编译代码并调用相同的顶级绑定(packedFunction
)。我已明确键入它以确保它是专门的(与使用SPECIALIZED编译指示相同的结果)。
但是如果我在ghci中运行main
函数(即使在连续调用之间用:set args
更改输入数据),计算的确需要不到10毫秒。
使用Main.hs
ghc -o main Main.hs -O2 -dynamic -threaded
我想知道开销来自哪里。有没有人对为什么会这样做有任何建议?
remdezx发布的示例的简化版:
{-# LANGUAGE OverloadedStrings #-}
module Main where
import Data.Array.Accelerate as A
import Data.Array.Accelerate.CUDA as C
import Data.Time.Clock (diffUTCTime, getCurrentTime)
main :: IO ()
main = do
start <- getCurrentTime
print $ C.run $ A.maximum $ A.map (+1) $ A.use (fromList (Z:.1000000) [1..1000000] :: Vector Double)
end <- getCurrentTime
print $ diffUTCTime end start
当我编译并执行时,需要 0,09s 才能完成。
$ ghc -O2 Main.hs -o main -threaded
[1 of 1] Compiling Main ( Main.hs, Main.o )
Linking main ...
$ ./main
Array (Z) [1000001.0]
0.092906s
但是当我预编译它并在解释器中运行它需要 0,25s
$ ghc -O2 Main.hs -c -dynamic
$ ghci Main
ghci> main
Array (Z) [1000001.0]
0.258224s
答案 0 :(得分:3)
我调查了accelerate
和accelerate-cuda
并添加了一些调试代码来测量ghci和编译优化版本下的时间。
结果如下,您可以看到堆栈跟踪和执行时间。
ghci run
$ ghc -O2 -dynamic -c -threaded Main.hs && ghci
GHCi, version 7.8.3: http://www.haskell.org/ghc/ :? for help
…
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Ok, modules loaded: Main.
Prelude Main> Loading package transformers-0.3.0.0 ... linking ... done.
…
Loading package array-0.5.0.0 ... linking ... done.
(...)
Loading package accelerate-cuda-0.15.0.0 ... linking ... done.
>>>>> run
>>>>> runAsyncIn.execute
>>>>> runAsyncIn.seq ctx
<<<<< runAsyncIn.seq ctx: 4.1609e-2 CPU 0.041493s TOTAL
>>>>> runAsyncIn.seq a
<<<<< runAsyncIn.seq a: 1.0e-6 CPU 0.000001s TOTAL
>>>>> runAsyncIn.seq acc
>>>>> convertAccWith True
<<<<< convertAccWith: 0.0 CPU 0.000017s TOTAL
<<<<< runAsyncIn.seq acc: 2.68e-4 CPU 0.000219s TOTAL
>>>>> evalCUDA
>>>>> push
<<<<< push: 0.0 CPU 0.000002s TOTAL
>>>>> evalStateT
>>>>> runAsyncIn.compileAcc
>>>>> compileOpenAcc
>>>>> compileOpenAcc.traveuseAcc.Alet
>>>>> compileOpenAcc.traveuseAcc.Use
>>>>> compileOpenAcc.traveuseAcc.use3
>>>>> compileOpenAcc.traveuseAcc.use1
<<<<< compileOpenAcc.traveuseAcc.use1: 0.0 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.use2
>>>>> compileOpenAcc.traveuseAcc.seq arr
<<<<< compileOpenAcc.traveuseAcc.seq arr: 0.105716 CPU 0.105501s TOTAL
>>>>> useArrayAsync
<<<<< useArrayAsync: 1.234e-3 CPU 0.001505s TOTAL
<<<<< compileOpenAcc.traveuseAcc.use2: 0.108012 CPU 0.108015s TOTAL
<<<<< compileOpenAcc.traveuseAcc.use3: 0.108539 CPU 0.108663s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Use: 0.109375 CPU 0.109005s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Fold1
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Fold1: 2.059e-3 CPU 0.002384s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Alet: 0.111434 CPU 0.112034s TOTAL
<<<<< compileOpenAcc: 0.11197 CPU 0.112615s TOTAL
<<<<< runAsyncIn.compileAcc: 0.11197 CPU 0.112833s TOTAL
>>>>> runAsyncIn.dumpStats
<<<<< runAsyncIn.dumpStats: 2.0e-6 CPU 0.000001s TOTAL
>>>>> runAsyncIn.executeAcc
>>>>> executeAcc
<<<<< executeAcc: 8.96e-4 CPU 0.00049s TOTAL
<<<<< runAsyncIn.executeAcc: 9.36e-4 CPU 0.0007s TOTAL
>>>>> runAsyncIn.collect
<<<<< runAsyncIn.collect: 0.0 CPU 0.000027s TOTAL
<<<<< evalStateT: 0.114156 CPU 0.115327s TOTAL
>>>>> pop
<<<<< pop: 0.0 CPU 0.000002s TOTAL
>>>>> performGC
<<<<< performGC: 5.7246e-2 CPU 0.057814s TOTAL
<<<<< evalCUDA: 0.17295 CPU 0.173943s TOTAL
<<<<< runAsyncIn.execute: 0.215475 CPU 0.216563s TOTAL
<<<<< run: 0.215523 CPU 0.216771s TOTAL
Array (Z) [1000001.0]
0.217148s
Prelude Main> Leaving GHCi.
已编译的代码
$ ghc -O2 -threaded Main.hs && ./Main
[1 of 1] Compiling Main ( Main.hs, Main.o )
Linking Main ...
>>>>> run
>>>>> runAsyncIn.execute
>>>>> runAsyncIn.seq ctx
<<<<< runAsyncIn.seq ctx: 4.0639e-2 CPU 0.041498s TOTAL
>>>>> runAsyncIn.seq a
<<<<< runAsyncIn.seq a: 1.0e-6 CPU 0.000001s TOTAL
>>>>> runAsyncIn.seq acc
>>>>> convertAccWith True
<<<<< convertAccWith: 1.2e-5 CPU 0.000005s TOTAL
<<<<< runAsyncIn.seq acc: 1.15e-4 CPU 0.000061s TOTAL
>>>>> evalCUDA
>>>>> push
<<<<< push: 2.0e-6 CPU 0.000002s TOTAL
>>>>> evalStateT
>>>>> runAsyncIn.compileAcc
>>>>> compileOpenAcc
>>>>> compileOpenAcc.traveuseAcc.Alet
>>>>> compileOpenAcc.traveuseAcc.Use
>>>>> compileOpenAcc.traveuseAcc.use3
>>>>> compileOpenAcc.traveuseAcc.use1
<<<<< compileOpenAcc.traveuseAcc.use1: 0.0 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.use2
>>>>> compileOpenAcc.traveuseAcc.seq arr
<<<<< compileOpenAcc.traveuseAcc.seq arr: 3.6651e-2 CPU 0.03712s TOTAL
>>>>> useArrayAsync
<<<<< useArrayAsync: 1.427e-3 CPU 0.001427s TOTAL
<<<<< compileOpenAcc.traveuseAcc.use2: 3.8776e-2 CPU 0.039152s TOTAL
<<<<< compileOpenAcc.traveuseAcc.use3: 3.8794e-2 CPU 0.039207s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Use: 3.8808e-2 CPU 0.03923s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Fold1
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 2.0e-6 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 2.0e-6 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0.000001s TOTAL
>>>>> compileOpenAcc.traveuseAcc.Avar
<<<<< compileOpenAcc.traveuseAcc.Avar: 0.0 CPU 0.000001s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Fold1: 1.342e-3 CPU 0.001284s TOTAL
<<<<< compileOpenAcc.traveuseAcc.Alet: 4.0197e-2 CPU 0.040578s TOTAL
<<<<< compileOpenAcc: 4.0248e-2 CPU 0.040895s TOTAL
<<<<< runAsyncIn.compileAcc: 4.0834e-2 CPU 0.04103s TOTAL
>>>>> runAsyncIn.dumpStats
<<<<< runAsyncIn.dumpStats: 0.0 CPU 0s TOTAL
>>>>> runAsyncIn.executeAcc
>>>>> executeAcc
<<<<< executeAcc: 2.87e-4 CPU 0.000403s TOTAL
<<<<< runAsyncIn.executeAcc: 2.87e-4 CPU 0.000488s TOTAL
>>>>> runAsyncIn.collect
<<<<< runAsyncIn.collect: 9.2e-5 CPU 0.000049s TOTAL
<<<<< evalStateT: 4.1213e-2 CPU 0.041739s TOTAL
>>>>> pop
<<<<< pop: 0.0 CPU 0.000002s TOTAL
>>>>> performGC
<<<<< performGC: 9.41e-4 CPU 0.000861s TOTAL
<<<<< evalCUDA: 4.3308e-2 CPU 0.042893s TOTAL
<<<<< runAsyncIn.execute: 8.5154e-2 CPU 0.084815s TOTAL
<<<<< run: 8.5372e-2 CPU 0.085035s TOTAL
Array (Z) [1000001.0]
0.085169s
正如我们所看到的,有两个主要问题:评估fromList (Z:.1000000) [1..1000000] :: Vector Double
,其中 69 ms 额外需要ghci(106ms - 37ms),而performGC
调用需要<强> 57 ms 额外(58 ms - 1 ms)。这两个总结了ghci下的执行和编译版本之间的区别。
我想,在编译程序中,RTS以与ghci不同的方式管理内存,因此分配和gc可以更快。我们也可以只测试这部分评估下面的代码(它根本不需要CUDA):
import Data.Array.Accelerate.Array.Sugar
import Data.Time.Clock (diffUTCTime, getCurrentTime)
import System.Mem (performGC)
main :: IO ()
main = do
measure $ seq (fromList (Z:.1000000) [1..1000000] :: Vector Double) $ return ()
measure $ performGC
measure action = do
start <- getCurrentTime
action
end <- getCurrentTime
print $ diffUTCTime end start
<强>结果:强>
这可能是另一个问题,但也许有人知道:我们能否以某种方式调整垃圾收集器以便在ghci下更快地工作?