我有一个表示事件日志的日期时间对象列表:
[datetime.datetime(2014, 12, 16, 0, 18, 12),
datetime.datetime(2014, 12, 16, 0, 18, 27),
datetime.datetime(2014, 12, 16, 0, 18, 27),
datetime.datetime(2014, 12, 16, 0, 19, 9),
datetime.datetime(2014, 12, 16, 0, 19, 39),
datetime.datetime(2014, 12, 16, 0, 19, 49),
datetime.datetime(2014, 12, 16, 0, 20, 2),
datetime.datetime(2014, 12, 16, 0, 20, 19),
datetime.datetime(2014, 12, 16, 0, 20, 47),
...
datetime.datetime(2014, 12, 16, 6, 23, 43),
datetime.datetime(2014, 12, 16, 6, 25, 45)]
如何创建每秒事件数量的情节?例如。价值应该是:
我试过这样的事情:
pd.Series([1 for _ in xrange(len(events_list))], index=events_list).plot()
和此:
df = pd.DataFrame({'ts': t, 'value': 1} for t in events_list)
df.pivot_table(index='ts', columns='value', aggfunc=len, fill_value=0).plot()
显然我得错了结果:
我可以要求引导我完成这个吗?
答案 0 :(得分:7)
您可能希望使用'value_counts'来计算特定时间事件的实例数,然后重新采样数据帧以填充na,就像这样,
import pandas as pd
import datetime
events = [datetime.datetime(2014, 12, 16, 0, 18, 12),
datetime.datetime(2014, 12, 16, 0, 18, 27),
datetime.datetime(2014, 12, 16, 0, 18, 27),
datetime.datetime(2014, 12, 16, 0, 19, 9),
datetime.datetime(2014, 12, 16, 0, 19, 39),
datetime.datetime(2014, 12, 16, 0, 19, 49),
datetime.datetime(2014, 12, 16, 0, 20, 2),
datetime.datetime(2014, 12, 16, 0, 20, 19),
datetime.datetime(2014, 12, 16, 0, 20, 47),
datetime.datetime(2014, 12, 16, 6, 23, 43),
datetime.datetime(2014, 12, 16, 6, 25, 45)]
df = pd.DataFrame ({'ts' : events})
df2 = df.ts.value_counts()
df2 = df2.resample('s').fillna(0)
print (df2.head(30))
这应该产生,
2014-12-16 00:18:12 1
2014-12-16 00:18:13 0
2014-12-16 00:18:14 0
2014-12-16 00:18:15 0
2014-12-16 00:18:16 0
2014-12-16 00:18:17 0
2014-12-16 00:18:18 0
2014-12-16 00:18:19 0
2014-12-16 00:18:20 0
2014-12-16 00:18:21 0
2014-12-16 00:18:22 0
2014-12-16 00:18:23 0
2014-12-16 00:18:24 0
2014-12-16 00:18:25 0
2014-12-16 00:18:26 0
2014-12-16 00:18:27 2
2014-12-16 00:18:28 0
2014-12-16 00:18:29 0
2014-12-16 00:18:30 0
2014-12-16 00:18:31 0
2014-12-16 00:18:32 0
2014-12-16 00:18:33 0
2014-12-16 00:18:34 0
2014-12-16 00:18:35 0
2014-12-16 00:18:36 0
2014-12-16 00:18:37 0
2014-12-16 00:18:38 0
2014-12-16 00:18:39 0
2014-12-16 00:18:40 0
2014-12-16 00:18:41 0
Freq: S, dtype: float64