SimpleKMeans kmeans = new SimpleKMeans();
int numberOfClusters = 2;
int[] assignments = null;
kmeans.setSeed(10);
// This is the important parameter to set
kmeans.setPreserveInstancesOrder(true);
try {
kmeans.setNumClusters(numberOfClusters);
kmeans.buildClusterer(instancesOne); // <-- exception being thrown
// This array returns the cluster number (starting with 0) for each instance
// The array has as many elements as the number of instances
assignments = kmeans.getAssignments();
} catch (Exception e) {
e.printStackTrace();
}
我试图通过k-means算法初始化EM算法的参数。所以我试图获得2个质心,我可以进一步训练GMM的参数。但是我收到以下错误:
weka.core.WekaException: weka.clusterers.SimpleKMeans: Cannot handle any class attribute!
at weka.core.Capabilities.test(Unknown Source)
at weka.core.Capabilities.test(Unknown Source)
at weka.core.Capabilities.testWithFail(Unknown Source)
at weka.clusterers.SimpleKMeans.buildClusterer(Unknown Source)
at hmm.HMM.run(HMM.java:62)
at hmm.HMM.main(HMM.java:22)
Exception in thread "main" java.lang.NullPointerException
at hmm.HMM.run(HMM.java:71)
at hmm.HMM.main(HMM.java:22)
另外,我如何设置两个随机质心。我认为setSeed()方法可以做到这一点,但是如何使用我的数据集将其写入?我的csv文件看起来如此:
然后加载它:
Instances instancesOne = loader.loadCsv("train", "class1");
以下是加载时属性的一些信息:
dataset:
@relation class1
@attribute x numeric
@attribute y numeric
@data
-9.0278,3.1518
-9.5656,3.6383
-9.805,3.8284
etc...
回答,需要此代码才能使Instances类更少(删除class属性):
// remove class attribute, make class-less
Instances dataClusterer = null;
weka.filters.unsupervised.attribute.Remove filter = new weka.filters.unsupervised.attribute.Remove();
filter.setAttributeIndices("" + (instancesOne.classIndex() + 1));
try {
filter.setInputFormat(instancesOne);
dataClusterer = Filter.useFilter(instancesOne, filter);
} catch (Exception e1) {
e1.printStackTrace();
return;
}
答案 0 :(得分:0)
我不相信K-Means Clustering需要一个class属性。如果您为实例设置了一个,请尝试将其删除并重新运行代码。 This guide可能有助于构建聚类模型的方法。
希望这有帮助!