我想保存并加载一个适合的随机森林分类器,但是我收到错误。
forest = RandomForestClassifier(n_estimators = 100, max_features = mf_val)
forest = forest.fit(L1[0:100], L2[0:100])
joblib.dump(forest, 'screening_forest/screening_forest.pkl')
forest2 = joblib.load('screening_forest/screening_forest.pkl')
错误是:
File "C:\Users\mkolarek\Documents\other\TrackerResultAnalysis\ScreeningClassif
ier\ScreeningClassifier.py", line 67, in <module>
forest2 = joblib.load('screening_forest/screening_forest.pkl')
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py",
line 425, in load
obj = unpickler.load()
File "C:\Python27\lib\pickle.py", line 858, in load
dispatch[key](self)
File "C:\Python27\lib\site-packages\sklearn\externals\joblib\numpy_pickle.py",
line 285, in load_build
Unpickler.load_build(self)
File "C:\Python27\lib\pickle.py", line 1217, in load_build
setstate(state)
File "_tree.pyx", line 2280, in sklearn.tree._tree.Tree.__setstate__ (sklearn\
tree\_tree.c:18350)
ValueError: Did not recognise loaded array layout
Press any key to continue . . .
我是否必须初始化forest2或其他东西?
答案 0 :(得分:7)
我用cPickle解决了它:
with open('screening_forest/screening_forest.pickle', 'wb') as f:
cPickle.dump(forest, f)
with open('screening_forest/screening_forest.pickle', 'rb') as f:
forest2 = cPickle.load(f)
但是,joblib解决方案也很有用。
答案 1 :(得分:2)
这里是您可以尝试的方法:
model = RandomForestClassifier()
model.fit(data,lables)
import pickle
Model_file = 'model.pkl'
pickle.dump(model, open(Model_file, 'wb'))
'''Reloading the model
load the model from Saved file'''
loaded_model = pickle.load(open(Model_file, 'rb'))