使用NLTK简化法国POS标签集

时间:2014-12-16 20:19:50

标签: python syntax nlp nltk stanford-nlp

如何简化斯坦福法国POS标签器返回的部分语音标签?将英文句子读入NLTK相当容易,找到每个单词的词性,然后使用map_tag()来简化标记集:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import os
from nltk.tag.stanford import POSTagger
from nltk.tokenize import word_tokenize
from nltk.tag import map_tag

#set java_home path from within script. Run os.getenv("JAVA_HOME") to test java_home
os.environ["JAVA_HOME"] = "C:\\Program Files\\Java\\jdk1.7.0_25\\bin"

english = u"the whole earth swarms with living beings, every plant, every grain and leaf, supports the life of thousands."

path_to_english_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\english-bidirectional-distsim.tagger"
path_to_jar = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\stanford-postagger.jar"

#define english and french taggers
english_tagger = POSTagger(path_to_english_model, path_to_jar, encoding="utf-8")

#each tuple in list_of_english_pos_tuples = (word, pos)
list_of_english_pos_tuples = english_tagger.tag(word_tokenize(english))

simplified_pos_tags_english = [(word, map_tag('en-ptb', 'universal', tag)) for word, tag in list_of_english_pos_tuples]

print simplified_pos_tags_english

#output = [(u'the', u'DET'), (u'whole', u'ADJ'), (u'earth', u'NOUN'), (u'swarms', u'NOUN'), (u'with', u'ADP'), (u'living', u'NOUN'), (u'beings', u'NOUN'), (u',', u'.'), (u'every', u'DET'), (u'plant', u'NOUN'), (u',', u'.'), (u'every', u'DET'), (u'grain', u'NOUN'), (u'and', u'CONJ'), (u'leaf', u'NOUN'), (u',', u'.'), (u'supports', u'VERB'), (u'the', u'DET'), (u'life', u'NOUN'), (u'of', u'ADP'), (u'thousands', u'NOUN'), (u'.', u'.')]

但我不确定如何将以下代码返回的法语标签映射到通用标签集:

#!/usr/bin/python
# -*- coding: utf-8 -*-

import os
from nltk.tag.stanford import POSTagger
from nltk.tokenize import word_tokenize
from nltk.tag import map_tag

#set java_home path from within script. Run os.getenv("JAVA_HOME") to test java_home
os.environ["JAVA_HOME"] = "C:\\Program Files\\Java\\jdk1.7.0_25\\bin"

french = u"Chaque plante, chaque graine, chaque particule de matière organique contient des milliers d'atomes animés."

path_to_french_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\french.tagger"
path_to_jar = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\stanford-postagger.jar"

french_tagger = POSTagger(path_to_french_model, path_to_jar, encoding="utf-8")

list_of_french_pos_tuples = french_tagger.tag(word_tokenize(french))

#up to this point all is well, but I'm not sure how to successfully create a simplified pos tagset with the French tuples
simplified_pos_tags_french = [(word, map_tag('SOME_ARGUMENT', 'universal', tag)) for word, tag in list_of_french_pos_tuples]
print simplified_pos_tags_french

有谁知道如何简化斯坦福POS标记器中法语模型使用的默认标签集?对于其他人可以就此问题提出的任何见解,我将不胜感激。

1 个答案:

答案 0 :(得分:8)

我最终只是手动将斯坦福的POS标签映射到通用标签集。对于它的价值,上面的代码片段是一个略大的工作流程的一部分,旨在测量法语和英语句子之间的句法相似性。这是完整的代码,以防其他人:

#!/usr/bin/python
# -*- coding: utf-8 -*-

'''NLTK 3.0 offers map_tag, which maps the Penn Treebank Tag Set to the Universal Tagset, a course tag set with the following 12 tags:

VERB - verbs (all tenses and modes)
NOUN - nouns (common and proper)
PRON - pronouns
ADJ - adjectives
ADV - adverbs
ADP - adpositions (prepositions and postpositions)
CONJ - conjunctions
DET - determiners
NUM - cardinal numbers
PRT - particles or other function words
X - other: foreign words, typos, abbreviations
. - punctuation

We'll map Stanford's tag set to this tag set then compare the similarity between subregions of French and English sentences.'''

from __future__ import division
import os, math
from nltk.tag.stanford import POSTagger
from nltk.tokenize import word_tokenize
from nltk.tag import map_tag
from collections import Counter

#########################
# Create Tagset Mapping #
#########################

def create_french_to_universal_dict():
    '''this function creates the dict we'll call below when we map french pos tags to the universal tag set'''
    french_to_universal = {}
    french_to_universal[u"ADJ"]    = u"ADJ"
    french_to_universal[u"ADJWH"]  = u"ADJ"
    french_to_universal[u"ADV"]    = u"ADV"
    french_to_universal[u"ADVWH"]  = u"ADV"
    french_to_universal[u"CC"]     = u"CONJ"    
    french_to_universal[u"CLO"]    = u"PRON"
    french_to_universal[u"CLR"]    = u"PRON"
    french_to_universal[u"CLS"]    = u"PRON"
    french_to_universal[u"CS"]     = u"CONJ"
    french_to_universal[u"DET"]    = u"DET"
    french_to_universal[u"DETWH"]  = u"DET"
    french_to_universal[u"ET"]     = u"X"
    french_to_universal[u"NC"]     = u"NOUN"
    french_to_universal[u"NPP"]    = u"NOUN"
    french_to_universal[u"P"]      = u"ADP"
    french_to_universal[u"PUNC"]   = u"."
    french_to_universal[u"PRO"]    = u"PRON"
    french_to_universal[u"PROREL"] = u"PRON"
    french_to_universal[u"PROWH"]  = u"PRON"
    french_to_universal[u"V"]      = u"VERB"
    french_to_universal[u"VIMP"]   = u"VERB"
    french_to_universal[u"VINF"]   = u"VERB"
    french_to_universal[u"VPP"]    = u"VERB"
    french_to_universal[u"VPR"]    = u"VERB"
    french_to_universal[u"VS"]     = u"VERB"
    #nb, I is not part of the universal tagset--interjections get mapped to X
    french_to_universal[u"I"]      = u"X"
    return french_to_universal

french_to_universal_dict = create_french_to_universal_dict()

def map_french_tag_to_universal(list_of_french_tag_tuples):
    '''this function reads in a list of tuples (word, pos) and returns the same list with pos mapped to universal tagset'''
    return [ (tup[0], french_to_universal_dict[ tup[1] ]) for tup in list_of_french_tag_tuples ]

###############################
# Define Similarity Functions #
###############################

def counter_cosine_similarity(c1, c2):
    '''this function reads in two counters and returns their cosine similarity'''
    terms = set(c1).union(c2)
    dotprod = sum(c1.get(k, 0) * c2.get(k, 0) for k in terms)
    magA = math.sqrt(sum(c1.get(k, 0)**2 for k in terms))
    magB = math.sqrt(sum(c2.get(k, 0)**2 for k in terms))
    return dotprod / (magA * magB)

def longest_common_subsequence_length(a, b):
    '''this function reads in two lists and returns the length of their longest common subsequence'''
    table = [[0] * (len(b) + 1) for _ in xrange(len(a) + 1)]
    for i, ca in enumerate(a, 1):
        for j, cb in enumerate(b, 1):
            table[i][j] = (
                table[i - 1][j - 1] + 1 if ca == cb else
                max(table[i][j - 1], table[i - 1][j]))
    return table[-1][-1]        

def longest_contiguous_subsequence_length(a, b):
    '''this function reads in two lists and returns the length of their longest contiguous subsequence'''
    table = [[0] * (len(b) + 1) for _ in xrange(len(a) + 1)]
    l = 0
    for i, ca in enumerate(a, 1):
        for j, cb in enumerate(b, 1):
            if ca == cb:
                table[i][j] = table[i - 1][j - 1] + 1
                if table[i][j] > l:
                    l = table[i][j]
    return l

def calculate_syntactic_similarity(french_pos_tuples, english_pos_tuples):
    '''this function reads in two lists of (word, pos) tuples and returns their cosine similarity, logest_common_subsequence, and longest_common_contiguous_sequence''' 
    french_pos_list           = [tup[1] for tup in french_pos_tuples]
    english_pos_list          = [tup[1] for tup in english_pos_tuples]
    french_pos_counter        = Counter(french_pos_list)
    english_pos_counter       = Counter(english_pos_list)
    cosine_similarity         = counter_cosine_similarity(french_pos_counter, english_pos_counter)
    lc_subsequence            = longest_common_subsequence_length(french_pos_counter, english_pos_counter) / max(len(french_pos_list), len(english_pos_list))
    lc_contiguous_subsequence = longest_contiguous_subsequence_length(french_pos_counter, english_pos_counter) / max(len(french_pos_list), len(english_pos_list))   
    return cosine_similarity, lc_subsequence, lc_contiguous_subsequence 

########################### 
# Parse POS with Stanford #
###########################

#set java_home path from within script. Run os.getenv("JAVA_HOME") to test java_home
os.environ["JAVA_HOME"] = "C:\\Program Files\\Java\\jdk1.7.0_25\\bin"

english = u"the whole earth swarms with living beings, every plant, every grain and leaf, supports the life of thousands."
french = u"Chaque plante, chaque graine, chaque particule de matière organique contient des milliers d'atomes animés."

#specify paths 
path_to_english_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\english-bidirectional-distsim.tagger"
path_to_french_model = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\models\\french.tagger"
path_to_jar = "C:\\Text\\Professional\\Digital Humanities\\Packages and Tools\\Stanford Packages\\stanford-postagger-full-2014-08-27\\stanford-postagger-full-2014-08-27\\stanford-postagger.jar"

#define english and french taggers
english_tagger = POSTagger(path_to_english_model, path_to_jar, encoding="utf-8")
french_tagger = POSTagger(path_to_french_model, path_to_jar, encoding="utf-8")

#each tuple in list_of_english_pos_tuples = (word, pos)
list_of_english_pos_tuples = english_tagger.tag(word_tokenize(english))
list_of_french_pos_tuples = french_tagger.tag(word_tokenize(french))

#simplify each tagset
simplified_pos_tags_english = [(word, map_tag('en-ptb', 'universal', tag)) for word, tag in list_of_english_pos_tuples]
simplified_pos_tags_french = map_french_tag_to_universal( list_of_french_pos_tuples )

print calculate_syntactic_similarity(simplified_pos_tags_french, simplified_pos_tags_english)