rmr2 mapreduce csv列的子集

时间:2014-12-16 20:12:45

标签: r csv hadoop mapreduce

我有一个非常大的CSV文件,有42个变量和200 000条记录。 我想通过map reduce(localbackend)处理它,但我总是得到以下错误:

Error: cannot allocate vector of size 15.6 Gb
In addition: Warning messages:
1: closing unused connection 3 (C:\Users\LSZL~1\AppData\Local\Temp\RtmpgJ2FXm\filea302f8a7363) 
2: In paste(rep(l, length(lvs)), rep(lvs, each = length(l)), sep = sep) :
  Reached total allocation of 8051Mb: see help(memory.size)
3: In paste(rep(l, length(lvs)), rep(lvs, each = length(l)), sep = sep) :
  Reached total allocation of 8051Mb: see help(memory.size)
4: In paste(rep(l, length(lvs)), rep(lvs, each = length(l)), sep = sep) :
  Reached total allocation of 8051Mb: see help(memory.size)
5: In paste(rep(l, length(lvs)), rep(lvs, each = length(l)), sep = sep) :
  Reached total allocation of 8051Mb: see help(memory.size)

我的代码:

inputformat <- make.input.format("csv", sep = ",", col.names=column_names)

a <- mapreduce(input="X:/BigData/working_dir/census-income.data", 
               input.format=inputformat,

               map = function(k, v){
                 key = v
                 return(keyval(key, v[1,1]))
               },

               reduce = function(k, v){
                 key = k[1, 1]
                 val = sum(k[, 2])
                 return(keyval(key, val))
               }               
)()

是否有可能不提供不必要的列(+数据)来映射reduce并选择那些其数据是必要的列?

1 个答案:

答案 0 :(得分:0)

我终于明白了。
我不知道它是否有效,但它确实有效。

column_names <- c("age","class_of_worker", "industry_code", "occupation_code", "education", 
                  "wage_per_hour", "enrolled_in_edu_inst_last_wk", "marital_status", "major_industry_code", 
                  "major_occupation_code", "race", "hispanic_origin", "sex", "member_of_a_labor_union", 
                  "reason_for_unemployment","full_or_part_time_employment_stat", "capital_gains", "capital_losses", 
                  "divdends_from_stocks", "tax_filer_status", "region_of_previous_residence", 
                  "state_of_previous_residence", "detailed_household_and_family_stat", 
                  "detailed_household_summary_in_household", "instance_weight", "migration_code-change_in_msa",
                  "migration_code-change_in_reg","migration_code-move_within_reg","live_in_this_house_1_year_ago", 
                  "migration_prev_res_in_sunbelt",  "num_persons_worked_for_employer", "total_person_earnings", 
                  "country_of_birth_father", "country_of_birth_mother", "country_of_birth_self", "citizenship", 
                  "own_business_or_self_employed", "fill_inc_questionnaire_for_veteran's_admin", 
                  "veterans_benefits", "weeks_worked_in_year", "year", "CLASS")

important_columns = c("age", "education", "wage_per_hour", "weeks_worked_in_year")

input_file_format = 
  make.input.format(
    "csv", 
    sep = ",", 
    col.names = column_names)    

input_subset = 
  mapreduce(
    input = "X:/BigData/working_dir/census-income.data", 
    input.format = input_file_format,
    map = 
      function(k, v) 
        subset(v, select = important_columns))

input_dataframe = from.dfs(input_subset)
input_dataframe = values(input_dataframe)
input_dataframe

数据:http://kdd.ics.uci.edu/databases/census-income/