我有这个本地数据框:
Source: local data frame [792 x 3]
team player_name g
1 Anaheim PERRY_COREY 31
2 Anaheim GETZLAF_RYAN 22
3 Dallas BENN_JAMIE 25
4 Pittsburgh CROSBY_SIDNEY 20
5 Toronto KESSEL_PHIL 27
6 Edmonton HALL_TAYLOR 16
7 Dallas SEGUIN_TYLER 24
8 Montreal VANEK_THOMAS 19
9 Colorado LANDESKOG_GABRIEL 18
10 Chicago SHARP_PATRICK 22
.. ... ... ..
我希望能够根据每位球员的平均进球数(g)对球队进行排名。这就是我所做的(真的感觉不是最理想的):
library(dplyr)
d1 <- select(df, team, g, player_name)
c1 <- count(d1, team, wt = g)
c2 <- count(d1, team, wt = n_distinct(player_name))
c3 <- cbind(c1, c2[,2])
c4 <- c3[,2] / c3[,3]
c5 <- cbind(c3, c4)
colnames(c5) <- c("team", "ttgpt", "ttnp", "agpp")
c6 <- mutate(c5, rank = row_number(desc(c4)))
c7 <- filter(c6, rank <=10)
c8 <- arrange(c7, rank)
这是c8的结果:
team ttgpt ttnp agpp rank
1 Chicago 177 23 7.695652 1
2 Colorado 164 23 7.130435 2
3 Anaheim 180 26 6.923077 3
4 NY_Rangers 153 23 6.652174 4
5 Boston 179 27 6.629630 5
6 San_Jose 157 25 6.280000 6
7 Dallas 155 25 6.200000 7
8 St._Louis 148 24 6.166667 8
9 Ottawa 160 26 6.153846 9
10 Philadelphia 140 23 6.086957 10
我想重新使用%>%
有关可复制的示例,请参阅CSV:playerstats.csv
答案 0 :(得分:3)
好的,你说的话:
df<-read.csv("../Downloads/playerstats.csv",header=T,sep=",")
df %>% group_by(Team)
%>% summarise(ttgp=sum(G),ttnp=n_distinct(Player.Name),agp=sum(G)/n_distinct(Player.Name))
%>% mutate(rank=rank(desc(agp)))
%>% filter(rank<=10)
%>% arrange(rank)
Source: local data frame [10 x 5]
Team ttgp ttnp agp rank
1 Chicago 177 23 7.695652 1
2 Colorado 164 23 7.130435 2
3 Anaheim 180 26 6.923077 3
4 NY Rangers 153 23 6.652174 4
5 Boston 179 27 6.629630 5
6 San Jose 157 25 6.280000 6
7 Dallas 155 25 6.200000 7
8 St. Louis 148 24 6.166667 8
9 Ottawa 160 26 6.153846 9
10 Philadelphia 140 23 6.086957 10
请注意,我不确定你对ttgpt和ttnp的意思。因此,我试着猜测它。